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ABSTRACT

Infrared sensor satellites are used to monitor the conditions in the earth’'s upper
atmosphere. In these systems, the electronic links connecting the cryogenically cooled
infrared detectors to the significantly warmer amplification electronics act as thermal
bridges and, consequently, the mission lifetimes of the satellites are limited due to
cryogenic evaporation. High-temperature superconductor (HTS) materials have been
proposed by researchers at the National Aeronautics and Space Administration Langley's
Research Center (NASA-LaRC) as an alternative to the currently used manganin wires
for electrical connection. The potential for using HTS films as thermal bridges has
provided the motivation for the design and the analysis of a spaceflight experiment to
evaluate the performance of this superconductive technology in the space environment.
The initial efforts were focused on the preliminary design of the experimental system
which allows for the quantitative comparison of superconductive leads with manganin
leads, and on the thermal conduction modeling of the proposed system (see previous
progress report - Scott and Lee, 1994). Most of the HTS materials were indicated to be
potential replacements for the manganin wires. In the continuation of this multi-year
research, the objectives of this study were to evaluate the sources of heat transfer on the
thermal bridges that have been neglected in the preliminary conductive model and then
to develop a methodology for the estimation of the thermal conductivities of the HTS
thermal bridges in space.

The Joule heating created by the electrical current through the manganin wires
was incorporated as a volumetric heat source into the manganin conductive model. The
radiative heat source on the HTS thermal bridges was determined by performing a
separate radiant interchange analysis within a high-Tc superconductor housing area. Both
heat sources indicated no significant contribution on the cryogenic heat load, which
validates the results obtained in the preliminary conduction model.

A methodology was presented for the estimation of the thermal conductivities of
the individual HTS thermal bridge materials and the effective thermal conductivities of
the composite HTS thermal bridges as functions of temperature. This methodology
included a sensitivity analysis and the demonstration of the estimation procedure using
simulated data with added random errors. The thermal conductivities could not be
estimated as functions of temperature; thus the effective thermal conductivities of the HTS
thermal bridges were analyzed as constants.
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CHAPTER 1

Introduction

Infrared (IR) sensors are crucial instruments for monitoring the concentration of
chemical radicals present in the earth's upper atmosphere. Their use in sensor satellites
allows for the evaluation of both the present condition and future changes in the
atmosphere. In these systems, the IR detectors are connected to the data acquisition and
storage electronics by the means of an electrical link, as seen in Figure 1.1. The IR
detectors require liquid helium cryogenic refrigeration (at ~ 4 K), whereas the electronics
must be kept at a considerably warmer temperature (at ~ 80 K). This technology is
therefore limited by the heat conducted through the electrical leads, which contributes to
the rate of cryogen evaporation. Because the amount of cryogen available characterizes
the mission lifetime of the satellites, the minimization of the nonparasitic heat load on the
cryogen system by the electrical instrumentation acting as a thermal bridge is of critical
interest. An efficient solution results in the use of an electrically conducting and
thermally isolating link between the IR detectors and the electronics. In order to meet

these conflicting requirements, high-temperature superconducting (HTS) materials have
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been proposed by researchers at the National Aeronautics and Space Administration’s
Langley Research Center (NASA-LaRC) as an alternative to the currently used manganin
wires for electrical connection. Indeed, HTS materials have been shown in the cryogenic
region to exhibit a lower thermal conductivity than manganin with a sufficiently high
electrical conductivity for detector applications, where typical currents are on the order
of 1 pA. An electronic link with such characteristics is therefore expected to improve the
thermal isolation of IR detectors and to reduce the rate of cryogen evaporation, or in other
words, to increase the lifetime of the satellites. Based on these theoretical considerations,
NASA-LaRC has considered the incorporation of this technology of a HTS link in IR
remote sensing platforms such as SAFIRE (Spectroscopy of the Atmosphere using Far
Infrared Emission) and SIRTF (Space Infrared Telescope Facility).

Preliminary investigations of replacing manganin technology with HTS films
technology have indicated a substantial reduction in thermal loss, translating into
approximately 10-15 percent enhancement in mission lifetime (Wise et al., 1992). It is
the potential for using HTS materials as thermal bridges in infrared sensor satellite
systems that has provided the motivation for the design and the analysis of an experiment
to evaluate the performance of this superconductive technology in the space environment.
The anticipated space launch of this experiment is projected for 1998. The initial efforts
in this multi-year research were focused on the preliminary design of the experimental
system and on the thermal conduction modeling of the proposed system (Lee, 1994). In
addition, preliminary structural analysis have been performed (Spencer, 1994). The

experimental design completed by Lee allows for the quantitative comparison of the heat
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load on the cryogen between different types of thermal bridges. Lee concentrated the
thermal analysis of the bridges on the conduction due to the temperature gradient along
the links, assuming that all other sources of heat transfer (radiation, electrical conduction)
are negligible. The results of this conductive analysis indicate that the majority of the
HTS materials displays heat loads on the cryogenic system under 15 percent compared
to the 20 percent heat load by the currently used manganin wires. These results, based
on the assumption that conduction is the dominant mode of heat transfer, show that most
of the HTS materials are potential replacements for the manganin wires as electrical

connections in infrared sensor satellite systems.

1.1 Goals and Objectives

The continuation of this on-going research focuses on the analysis of the space
experimental design for High-T, superconductive thermal bridges completed by Lee
(1994). The overall objectives of this study can be divided into two major areas which
are:

1) the evaluation of the sources of heat transfer on the thermal bridges that have been
assumed negligible in the conductive analysis performed by Lee,

and

2) the development of a methodology for the estimation of the thermal conductivities
of the HTS thermal bridges in the space environment.

The emphasis in the first area of interest is on determining whether or not the
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sources of heat transfer neglected in the preliminary conductive mathematical model of
the thermal bridges are significant sources of heat load on the cryogen. These sources
include the electrical heat source generated by the electronic signals from the IR detectors,
and the radiative exchange within the thermal bridge housing area of the experimental
design. The electrical heat source was evaluated through the implementation of the Joule
heating term into the conductive mathematical model of the thermal bridges. The specific
objective was to verify that the Joule heating term affects neither the heat loads on the
cryogen, nor the temperature distributions along the thermal bridges. In the assessment
of the radiative heat source on the HTS thermal bridges, a radiant interchange analysis
within a HTS housing area was conducted using the Monte-Carlo technique. The focal
point in this analysis was to compare the radiative heat loads on the HTS thermal bridges
with the respective conductive heat loads generated on the cryogen.

The second area of interest focuses on developing a methodology for the estimation
of the thermal conductivities of the HTS thermal bridges in space. The overall
significance of the capability to determine these thermal properties in the space
environment is that it will enable the quantitative assessment of the performance of HTS
materials as electronic leads in infrared sensor satellite systems. This capability will also
allow the evaluation of various space effects, thus providing a future means of monitoring
possible changes in the material due to the space environment. Both the thermal
conductivities of the individual HTS thermal bridge materials and the effective thermal
conductivities of the composite HTS thermal bridges were sought in this investigation.

The temperature dependence in both cases was modeled with the use of polynomials in
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temperature. The first specific objective was to conduct a sensitivity analysis on both
thermal conductivity models and to determine which thermal conductivity parameter could
be estimated for each model. The estimation procedure used in this study is a
modification of the Gauss linearization method and is based on the minimization of a
least-squares function with respect to the unknown parameters. This method also requires
temperature measurements; simulation of experimental data was therefore necessitated as
no actual temperature measurecments are yet available for this research. The second
specific objective was then to demonstrate the estimation procedure using simulated data

with added random errors.



CHAPTER 2

Literature Review

This chapter provides a review of the literature for both the analysis of the radiative
exchange within a space experimental design for high-temperature superconductive
thermal bridges and the estimation of the thermal conductivities of these HTS thermal
bridges.

The first section gives an introduction to superconductivity and discusses the possible
applications for high-temperature superconductors. The following section summarizes the
present state of knowledge pertaining to radiative exchange between surfaces and
emphasizes the Monte-Carlo method, which was used to assess the radiative heat load on
the HTS thermal bridges. The final section describes a minimization procedure based on
the Gauss method which was used to develop a methodology for the estimation of the

thermal conductivities of the HTS thermal bridges.



2.1 Superconductivity

After a brief history of superconductivity, this section presents the basic physical
characteristics of the two types of superconductors. The aim is to show that
superconductors are not only perfect conductors, but also diamagnetic materials. The

section concludes with an overview of possible applications for high-temperature

superconductors.

2.1.1 Brief History

Superconductivity was discovered in 1911 by Kamerlingh Onnes whose experiments
showed that mercury becomes superconductive when cooled to liquid helium temperatures
(Doss, 1989). Between 1911 and 1986 many more pure metals, alloys and doped
semiconductors were found to have this property. But prior to 1986, the maximum
observed transition temperature remained only at 23.21K for Nb,Ge (Figure 2.1.1). The
transition temperature, T, is defined as the temperature below which the superconductor
is in the well-known "superconducting state" (Allen, 1969). Then in 1986 a new group
of materials, known as high-temperature superconductors, was discovered by Bednorz and
Miiller (1986). In a very short period of time, the maximum critical temperatures were
increased from 23K to 35K and then to 90K. Indeed, there are now materials that
superconduct at 110-125K (Hunt, 1989), and the latest results obtained by Lagués et al.

(1993) suggest possibilities of superconductivity at 250K.
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Figure 2.1.1. Maximum Transition Temperature of Superconductors vs.
Year of Discovery (Doss, 1989).

2.1.2 The Two Types of Superconductors
Superconductors are generally divided into two types. Most pure elemental
superconductors are Type I, whereas most alloy conventional superconductors and all

HTS are Type IL

2.1.2.1 Type I Superconductors

In March 1987 at the famous meeting of the American Physical Society which
became known as the "Woodstock of Physics”, Brian Maple, professor of physics at the
University of California, San Diego, said: "the fascination of superconductivity is

associated with the words perfect, infinite, and zero" (Vidali, 1993). This summarizes



very well the properties of superconductors. Superconductivity actually possesses two
outstanding features occuring suddenly at the critical temperature 7, These features are
the zero electrical resistance, or in other words the infinite conductance, and the expulsion
of magnetic flux, also called diamagnetism. The second property, the diamagnetism,
which is less apparent than the first but also important, was studied by Meissner and
Oschsenfeld in 1933. The Meissner effect is the proof that superconductivity is more than
perfect conductivity. Both superconductive properties have operating regions. Electric
currents can be propagated without resistance if the current density is less than the critical
current density J. of the superconducting material. In the same logic, if the magnetic
field applied is greater than the critical magnetic field, H,, of the superconductor (Figure
2.1.2), its superconductivity is destroyed (Hunt, 1969). Consequently, each
superconductor is associated with a specific critical temperature, magnetic field and

current density (Bardeen, 1968).

' Normal Normat
H
. H
T
Superconducting ;"
Uy IS
o] T T % T
Type 1 Type I

Figure 2.1.2. Phase Diagrams of Type I and Type II Superconductors
(Rose-Innes and Rhoderick, 1969).
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In Type I superconductors, a relationship between the critical current density and the
critical magnetic field exits. This relationship can be derived from the equations
describing the electrodynamics of the supercurrent, which are known as the London
equations (Rose-Innes and Rhoderick, 1969).

But how does superconductivity occur in these materials? The theory developed by
Bardeen, Cooper and Schrieffer (1957) (the BCS theory) gives a successful explanation
for Type I materials. It is based on a coherent pairing of electrons which takes place with
the help of the ions from the solid, under appropriate circumstances. The stronger the
coupling, the higher the critical temperature. It should be noted that the critical
temperatures predicted by the BCS theory cannot exceed 40 K.

As certain superconductors, especially alloys and impure metals, were noticed to
behave differently than Type I superconductors, Abrikosov pointed out in 1957 that the
apparent anomalous properties were the inherent features of another class of

superconductors, known as Type II (Rose-Innes and Rhoderick, 1969).

2.1.2.2 Type II Superconductors

Type II materials behave like Type I materials for magnetic fields below a critical
level H,,, as shown by Figure 2.1.2. However, when the magnetic field is increased
above H._,, Type II superconductors allow the flux to penetrate, and the material is in the
"mixed-state” until the magnetic field reaches the upper critical level H,, (Rose-Innes and
Rhoderick, 1969). In the "mixed state" (H,<H<H,,), normal (nonsuperconducting)
regions are microscopically mingled with superconducting regions and the material

11



remains superconducting. Since the superconductor's energy is not used in expelling the
flux, the critical current density is generally much higher in Type II superconductors than
in Type L.

Type II superconductors with a critical temperature above 25 K belong by convention
to the "high-T_" category and are called High-Temperature Superconductors (Doss, 1989).
With its 40 K limit on the critical temperature, the BCS theory is unable to explain the
critical temperatures obtained for some HTS Type II materials. As a result, some
alternative theories, which are also based on electron pairs, have been proposed but so far
no comprehensive theory has emerged.

The latest discovered HTS materials (YBCO, BSCCO and TIBaCaCuOQ) are ceramic
oxides and have the brittle mechanical characteristics of ceramics. In addition, the
superconductivity properties are highly anisotropic. The HTS material characteristics,
especially the properties of the superconductors YBCO and BSCCO, and the HTS
material structure have been described in detail by Lee (1994). Lee also discussed the
processing of HTS films on substrate materials, the requirements of the different
techniques, and possible applications for HTS materials. Indeed, it is important to
distinguish between bulk HTS materials and their thin-film counterparts: HTS thin films
generally have much better critical current densities (J, can achieve 10°-10° A/m?) than
for the same material in bulk form, although some other properties such as the critical

temperature 7, are sometimes worse.
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2.1.3 Applications of High-Temperature Superconductors

Prior to the discovery of the HTS materials, the zero electrical resistivity of
superconductors cooled to liquid helium temperatures had been exploited for various
electronic and large-scale applications. The Josephson effect discovered in 1962 led to
the development of Josephson junction switches and Superconducting Quantum
Interference Devices (SQUIDs). The routinely high-field applications are restricted to the
use of superconducting magnets in particle accelerators in the study of high energy
physics and to Magnetic Resonance Imaging (MRI) for medical diagnostic purposes
(Geballe and Hulm, 1988). The major advantage of using HTS materials is their high
critical temperatures which allows for cooling with liquid nitrogen rather than liquid
helium, expensive and inconvenient to use. The greatest savings could be obtained in the
field of microelectronics where the refrigeration cost is a major part of the system cost
(Geballe and Hulm, 1988). Other possibilities for HTS materials are starting to be
realized by industry. Lee (1994) discussed the near-term and longer-term projects where
HTS materials are being strongly considered. More work, however, needs to be done in
understanding and enhancing the restrictive processing requirements of HTS materials.

Space application of superconductivity is another excellent demonstration where the
utilization of superconductors can vastly improve performances or perform tasks that were
not previously feasible (Geballe and Hulm, 1988). The use of HTS ceramics for sensor
leads for several sensing systems in millimeter and infrared ranges could diminish both
the electrical losses and the thermal noise limitations. Consequently reduced cryogenic

requirements, high frequency operations and lower power local oscillators could be
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ensured (Krishen and Ignatiev, 1988).

High-temperature superconductors offer attractive advantages for a wide variety of
both small- and large-scale applications. But it may take a long time before technologies
using these new materials are ready to enter the market. However, if the critical
temperature is increased to room temperature, as suggested by the latest experiments
(Lagués et al., 1993), there would be an immediate opening for many incredible

applications.

2.2 Numerical Methods Used for the Evaluation of Radiative Exchange within

Enclosures

The determination of the radiative heat load on the HTS thermal bridges will enable
us to conclude whether or not radiation affects the heat load on the cryogen. An alternate
approach for determining this radiative heat load is to evaluate the radiative exchange
within the housing chamber for the thermal bridges.

For many years, the analysis of radiation exchange between surface elements within
enclosures has been conducted in various ways. In many practical engineering situations,
the diffuse-gray enclosure approximation is made and the geometric configuration factor
is computed. This approach is reasonable if the assumptions are well approximated or
the directional spectral radiative properties are not available, and if high accuracy is not
needed. When the enclosure consists of both diffuse and purely specular surfaces, the
configuration factor is extended to the exchange factor (Eckert and Sparrow, 1961).

These factors are based on geometry, and as the enclosure geometry becomes complex
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they can become very difficult to evaluate. In addition, their use in the formulation of
the interchange problems require the inversion of an often large matrix. Considering the
limited amount of directional information these factors contain, the use of these tedious
numerical techniques might not be worth while.
To account for mixed specular and diffuse reflection models for surfaces, the
reflectivity, p, can be assumed to be the sum of two components and be expressed as,
p =0, (2.2.1)
where £ is the diffuse component of the reflectivity and o’ is the specular component of
the reflectivity. This assumed behavior of the reflectivity is taken into account in the
computation of the radiation distribution factors D; (Mahan and Eskin, 1984). This factor
represents the fraction of diffusely emitted radiation from surface i absorbed by surface
j due to direct radiation and to all directional diffuse and specular reflections. From its
definition, one can see that the distribution factor is not strictly a geometrical factor and
that it contains directional information. An efficient way for the distribution factors to

be computed is through the Monte-Carlo method.

2.2.1 The Monte-Carlo Method

The Monte-Carlo method is a statistical numerical method used to compute the
distribution factors. It models the radiative exchange process by following the life of
discrete energy bundles from emission to absorption using the probabilistic interpretation
of the surface properties. This method is very useful to treat complex geometries. It can
also solve for directional and spectral-surface property variations. As a statistical method
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it has the disadvantage of requiring the emission of a large number of energy bundles to
converge and thus excessive computing time may be necessary. But once the distribution
factors have been obtained, if the temperatures are known for all surfaces and wavelength
intervals, calculation of the net heat flux (W/m?) through surface i is then relatively
simple using the following equation,
K n
G = 30 32 €us(By,T) @y D) @22
where €, is the emissivity of surface i in wavelength interval &, e, (A A,'Tj) is the emissive
power of surface j in wavelength interval k, Dy, is the distribution factor from surface i
to surface j in wavelength interval k, and §; is the Kronecker delta function. This
formulation succeeds in eliminating the matrix inversion required when using the
configuration or exchange factor. As the spatial and spectral resolutions increase, the
solution becomes exact.
The Monte-Carlo method was applied in this study to evaluate the radiative heat
source on the high-temperature superconductive thermal bridges. This technique was
preferred because of its ability to treat complex geometries and to account for mixed

specular and diffuse reflection models.
2.3 Minimization Methods Used for the Estimation of Thermal Properties

A key strategy to assess the feasibility of HTS-substrate combinations as electronic
leads in infrared sensor satellite systems, is to estimate the thermal conductivities of the
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samples in the space environment. An effective technique for the simultaneous estimation
of thermal properties consists of the minimization of an objective function. The Gauss
Linearization method based on the least squares function is an important method in this

field.

2.3.1 The Gauss Linearization Method
The Gauss Linearization method involves the minimization of the sum of squares
function S with respect to the unknown parameters. The sum of squares function given
by Beck and Arnold (1977) is
S = [F-TB) WIY-T@), 2.3.1)
where Y is a vector of measured temperatures, T is a vector of calculated temperatures
as a function of B, the true parameter vector, and W is a weighting matrix. The thermal
properties are found using an iterative process which minimizes the sum of the square of
the difference between the measured and the calculated temperatures by updating the
thermal property values. First, the derivative of S with respect to 8 is set equal to zero.
Then, using a Taylor series expansion, this expression is solved for b, the estimated
parameter vector for 8. This process provides a linear approximation to the nonlinear
model. It requires that the first derivatives of T are continuous in 8 and that the higher
derivatives are bounded. Beck and Amold (1977) describe the Gauss method as being
simple and practical for seeking minima which are reasonably well defined provided the
initial estimates are in the neighborhood of the minimum. But in the case of poor initial
guesses for the parameters or near-linear dependence between the parameter sensitivity
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coefficients, oscillations and non-convergence can occur in the iterative process. In order
to improve the Gauss estimation method, Box and Kanemasu (1972) suggested a small
correction in the direction of the parameter variations. Bard (1970) modified the Box-
Kanemasu method by including a check to ensure the continuous decrease of §, the sum
of squares function, from one iteration to another. This is done by reducing the step by
one-half if the function does not decrease.

The modified Box-Kanemasu method has been applied in a wide range of
engineering areas. Scott and Saad (1993) employed the modified Box-Kanemasu method
for the estimation of kinetic parameters associated with the curing of epoxy resin. They
showed that inaccurate parameter estimations and in some cases non-convergence of the
estimation process could result from linear dependence between the sensitivity
coefficients. The use of the modified Box-Kanemasu method in cryosurgical applications
by Scott and Scott (1993) allowed for the determination of the optimal time for cryogenic
tumor treatment. This work also concluded that, when available, prior information should
be included in the estimation process as it significantly improves accuracy.

Iterative least squares schemes similar to the modified Box-Kanemasu method exist
and some are discussed by Beck and Arnold (1977). Jurkowsky et al. (1992) studied an
optimization procedure enabling the simultaneous identification of thermal conductivity
and thermal contact resistance without using interior sensors. They concluded that small
sensitivity coefficients or the unbalance of the sensitivity matrix resulted in the instability
of their estimation procedure.

The careful examination of the sensitivity coefficients therefore éppears to be an
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imperative step prior to the implementation of parameter estimation methodologies.
Indeed, the sum of squares function S has no unique minimum if the sensitivity
coefficients are correlated. Furthermore, the magnitudes of the dimensionless sensitivity
coefficients are by convention limiting factors in the possibility of estimating parameters
because they indicate the influence of each parameter in the mathematical model. In the
analysis of sublimation-dehydration within a porous medium, Scott (1994) conducted a
sensitivity study which examined the importance of the material properties on the
solution. Scott was able to conclude for which parameter temperature provides the most
information. The sensitivity study can also be applied for the design of optimal
experiments. In this case the maximum magnitude values of the sensitivity coefficients
are interpreted as criteria for the determination of optimal experimental parameters.
Taktak et al. (1991) and Moncman (1994) employed this technique to design optimal
experiments for the estimation of thermal properties of composite materials. In a one-
dimensional experiment, they both determined the optimal heating time of the applied heat
flux, the optimal temperature sensor location and the optimal experimental time.
Moncman also studied these parameters for a two-dimensional experimental design.
The procedure used in this research to estimate the thermal conductivities of the
HTS-substrate combinations is a modification of the Gauss Linearization method
previously discussed. This method was chosen due to its capability to simultaneously

estimate parameters and its accuracy in the final estimates.
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CHAPTER 3

Heat Transfer Analysis of the Thermal Bridges

This chapter is devoted to the thermal analysis of different types of electrical leads
in infrared sensor satellite systems. These electrical leads act as thermal bridges because
they are submitted to a temperature gradient between the data acquisition unit at a
temperature of 80 K and the cryogenic infrared detector at a temperature of 4 K. The
analysis of the heat transfer in the thermal bridges was realized assuming spaceflight
conditions.

The first section provides a general description of the preliminary experimental
design completed by Lee (1994). This design is characterized by identical chambers with
only the thermal isolator material being different in each chamber; all sources of thermal
transfer other than conduction are minimized. The different HTS-substrate combinations
are presented at the end of the first section. The following section focuses on the
determination of the conductive heat load supplied to the cryogen by each thermal bridge.
As an analytical exact solution could not be found for such a complex conduction

problem, a numerical scheme was used. The finite difference program ORTHO3D was
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utilized to formulate the conductive mathematical models. In the final section, the
assessment of the importance of the radiative heat load on the cryogenic heat load due
to the use of HTS thermal bridges is presented. The Monte-Carlo technique was used to

perform the analysis of the radiative exchange within the thermal bridge housing area.

3.1 Lee's Experimental Design

The experimental design completed by Lee (1994), shown in Figure 3.1.1, is
comprised of three major components, which are the liquid helium dewar, the cryostat and
the thermal bridge housing area. The cross-sectional view of the thermal bridge housing
area (Figure 3.1.2) shows the three identical vacuum chambers containing three different
types of electronic leads. Two chambers will house high-temperature superconductive
leads and the third will contain manganin wires. The vacuum environment of 6.8x10°¢
atm is produced to minimize convection. A steady heat flux, controlled by a heater, is
applied at one end of the thermal bridges so that the temperature reaches approximately
80 K at this end (Figure 3.1.3). The other end is attached to a copper block in direct
contact with a cryogenically cooled disk at an approximate temperature of 4 K. This
temperature is maintained by a temperature controller. The heat loss due to each type of
thermal isolator can be calculated by a simple conduction analysis along the copper
blocks which contain the cold ends of the thermal isolators and the cold tip disk. The
temperature at both ends of the thermal bridges are measured by temperature sensors.

The constraints of the spaceflight mission were taken into account. This preliminary
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Figure 3.1.2. Cross-Sectional View of Thermal
Bridge Housing Area.
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design respects the size, weight, power and budget limitations required. It will eventually
need to meet the spaceflight launch conditions. The HTS thermal bridges must actually
be supported to withstand the vibrational loads of 12.6 g rms associated with the launch.
Following Spencer's work (1994), Ron Nottingham, an undergraduate student in the
Mechanical Engineering Department at Virginia Tech, is presently studying several
support mechanisms. These are designed to strengthen the HTS thermal bridges during
launch while the bridges are expected to vibrate, but to have no contact with them in
space, where they are presumed to be stable. As a result, in space, the heat transfer
through the supports should not affect the heat transfer through the HTS thermal bridges.

Five possible HTS-substrate combinations are evaluated in this research. These are
YBa,Cu,0,, lines on Ytiria-Stabilized Zirconia (YSZ, 10wt%, cubic); BiSrCaCu,O, lines
on YSZ; YBa,Cu,0,, lines on Fused SIlica (FSI, with 3000 A buffer layer of zirconia);
BiSrCaCu,O, lines on FSI (3000 A buffer layer of zirconia); and YBa,Cu,0,, lines on
211 Green Phase (GREEN). Only two of these five combinations will be selected for the
final experimental design.

The detector leads must be able to transmit typical signal of 1 pA or less. Each
thermal bridge contains a minimum of sixty detector leads. In the case of manganin,
these are 40 AWG wires encased in a thin layer of Kapton for insulation (about 0.0254
mm thickness). In the case of HTS materials, there are sixty HTS leads printed onto a
152.4 mm long by 9.144 mm wide by 0.1524 mm thick substrate, as shown by Figure
3.1.4. Each HTS lead is 0.0508 mm wide by 0.0508 mm thick. The spacing between the
leads is 0.1016 mm. The details of the HTS dimensions are provided in Figure 3.1.5.
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Figure 3.1.5. Detail A of HTS Leads on Substrate
(Thermal Bridge).
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3.2 Determination of the Conductive Heat Load on the Cryogen

The goal of the following analysis is to determine the conductive heat load supplied
to the cryogen by each thermal bridge. This goal enables the quantitative comparison of
the performance of HTS materials and manganin wires for use as electronic leads to
cryogenic sensors in the space environment. The control-volume-based finite difference
program ORTHO3D (Creel and Nelson, 1994) was utilized to describe the conduction in
the thermal bridges. Each thermal bridge was considered separately in the conductive
mathematical models. The models were formulated assuming that all other heat transfer
(radiation, convection) are negligible.

The first subsection discusses the main characteristics of the control-volume-based
finite difference method and introduces the finite difference program ORTHO3D. The
second subsection details the geometric modeling for both the HTS and manganin thermal
bridges. In the next subsection, the theoretical development for the incorporation of the
electrical current in the manganin model is presented. The final subsection focuses on
the convergence of the conductive mathematical models and provides the results, which
are the temperature distributions along the thermal bridges and the heat load on the

cryogen for the HTS and manganin models.

3.2.1 Control-Volume-Based Finite Difference Program ORTHO3D
A practical alternative procedure for solving multidimensional situations is to use a

numerical method. The control-volume-based finite difference method is one of the more
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popular numerical methods used in heat transfer problems. This method involves the
discretization of the domain of interest into small volumes. Each control volume is
represented by a grid point in its center. In the control-volume method, the properties
attached to a grid point are assumed to prevail over the entire corresponding control
volume. This assumption allows for the approximation of the differential equation
governing the heat transfer problem to a set of discretized algebraic equations. This set
of equations can then be solved, providing an estimate of the exact solution. In the limit
of spatial refinement, the numerical solution becomes exact.

The program ORTHO3D, used in this research to analyze the conduction in the
thermal bridges, is a control-volume, finite difference heat transfer program. It has been
developed by Dr. D.J. Nelson, professor of Mechanical Engineering at Virginia Tech.
ORTHO3D is based on an extension of the program CONDUCT created by Patankar
(1991). The modifications performed on the original program allow for the study of
three-dimensional materials with orthotropic properties. ORTHO3D also has the
capability to add a contact resistance between layers in the z direction. Creel and Nelson
(1994) used ORTHO3D to approximate a layer by a contact resistance in the thermal
model of a three dimensional microelectronic package. It should be noted that the pre-
packaged finite difference modeling programs PATRAN (1990) and SINDA (1985) were
initially used in this research to study the conductive heat transfer in the thermal bridges.
However, the limitation of the computer program SINDA, specifically its inability to
converge to the correct temperature distribution, created the need to use ORTHO3D. This

finite difference program performed efficiently in this investigation.
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The structure of the original program CONDUCT, which is comprised of two main
parts, has been maintained in ORTHO3D. While the invariant part, which solves the set
of algebraic discretization equations, is common to all applications, the adapt part is a
problem-dependent part and has to be modified by the user for each application. This
original structure makes the program very easy to use. The program ORTHO3D and its
capabilities have been described in detail by Creel (1994).

The program ORTHO3D has the ability to solve a three-dimensional conductive heat
transfer occurring within a domain which can be defined by rectangular coordinates. The
governing equation of such problem is

oT
]+ .%[kya_] + a[k g] + Ss‘m , (3.2.1)

g z
where p is the density, c is the specific heat, k,, k, and k, are the conductivities in the x,
y and z directions, respectively, T is the temperature and S,,, is the volumetric heat source
in the domain. In this study, ORTHO3D is employed to analyze the heat conduction
through the thermal bridges, assuming that all other heat transfer (radiation, conduction)
are negligible. This conduction problem is steady state and the materials constituting the

thermal bridges are assumed to be isotropic, that is k=k=k=k, for each material i.

Therefore, the differential equation that needs to be solved is

T B L

i Crales +S., = 0. (3.2.2)

&8“"

This is a nonlinear problem because k depends on temperature. The volumetric heat
source, S,,,, is detailed later in Section 3.2.3.
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Before developing the boundary conditions that are applied in Eq. (3.2.2), the

geometric models of the thermal bridges need to be defined.

3.2.2 Thermal Bridge Geometric Modeling

The control volume design was performed using the scheme called Practice B
(Patankar, 1991). First, the domain was divided into control volumes, and then grid
points were placed at the center of each control volume. This practice ensures the
coincidence of the location of discontinuity in conductivity or heat generation with a
control volume face. The grid locations in the x, y and z directions are denoted by i, j
and k, respectively. The node numbering scheme ranges from 1 to L1, M1 and N1 for

the x, y and z directions, respectively.

3.2.2.1 HTS Thermal Bridges

The geometric modeling of the HTS thermal bridges with ORTHO3D is similar to the
one realized by Lee (1994) with the software PATRAN. The individual leads of the HTS
material are lumped as a single lead on the substrate (Figure 3.2.1). Due to the symmetry
in the y direction, only one-half of the HTS thermal bridges need to be modeled. Because
of the non-regularity of the geometric model, a nominal rectangular domain is first drawn
around it, as shown by Figure 3.2.1. Then this nominal domain is discretized into active
and inactive zones, which are divided into control volumes. The inactive zones lie
outside the real domain and no solution is sought there. The thermal conductivity is

hence set to zero in the inactive region.
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Figure 3.2.1. HTS Thermal Bridge Geometric Modeling Using ORTHO3D.
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The nominal domain is discretized into one zone in the x direction, two zones in the
y direction and two zones, or three, depending on the presence of a buffer layer between
the substrate and the HTS leads, in the z direction. Figure 3.2.1 provides the details of
face L1 (i=L1, =Ly, ;ma priaze) and displays the zone discretization in the y and z directions.
This figure also supplies a schematic of the boundary conditions. Face I1 (i=1, x=0) has
a fixed temperature of 4 K and face L1 is submitted to a constant heat flux so that the
temperature on this face reaches 80 K. This constant heat flux was calculated for each
HTS-substrate combination using a one-dimensional parallel flow assumption (Lee, 1994).

The four other surfaces of the nominal rectangular domain are insulated.

3.2.2.2 Manganin Thermal Bridge

The manganin wires were also modeled as a single wire (Figure 3.2.2). However, in
order to use the program ORTHO3D developed in rectangular coordinates, this single
wire was modeled to be rectangular, with same cross-sectional area. Taking advantage
of the symmetry, only a fourth of the manganin thermal bridge was studied. As for the
HTS thermal bridges, the nominal domain is discretized into zones. One zone is set in
the x direction and two zones are specified in the y and z directions. The details of face
L1 are shown by Figure 3.2.2. The boundary conditions are analogous to those for the

HTS thermal bridges.
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3.2.3 Incorporation of the Electrical Current in the Manganin Wires
The IR detectors transmit typical signals of 1 pA or less. The electrical power

(P

tecr = Reteed 2 of the electrical current, /, flowing through the thermal bridge which has

an electrical resistance R,,., generates heat along its length. This electrical heat source
could be a significant source of heat load on the cryogen. Because the HTS materials do
not have electrical resistance at cryogenic temperatures, only the manganin wires can be
affected by the electronic signals. Therefore, the electrical conduction was implemented
into the conductive mathematical model for the manganin wire in order to obtain the
effective conductive heat transfer through the wire. The incorporation of the electrical
conduction in the governing heat conduction equation, Eq. (3.2.2), is realized via the term
Sgens Which represents the volumetric heat generated in the domain.

The electronic signals create in the manganin wires a volumetric heat source, S,

defined as the electrical power dissipated (W) over the volume (m*), and is expressed as

2
s - Rad” (3.2.3)
gen AcL

where R,,,,, is the electrical resistance of manganin, I is the electrical current (1 pA) and
A, and L are the cross-sectional area and length of the manganin link, respectively.
Introducing the current density J and the electrical resistivity p,,. reduces the Joule

heating term to

Seon = 7P e (3.2.4)

The current density through the manganin wires, J, can be calculated because the
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electrical current, 7, and the cross-sectional area, A, are both known. The electrical
resistivity of manganin, p,,., is a function of temperature. Its variation needs to be
determined for the temperature range of the thermal bridge.

The literature (Standard Handbook for Electrical Engineers, 13" ed., 1989) provides
the electrical resistivity, p,,...,» and the temperature coefficient per °C, a,,,, ;. for the
manganin material at 20°C. Over moderate ranges of temperatures, such as 100°C, the

change of resistivity is usually proportional to the change of temperature, that is

Petect,T, = pdxr,Tl[l + “elm,rl(Tz“Tl)] ) (3.2.5)

where p,..r, and p,..r, are the electrical resistivities at temperatures 7, and 7, (usually
T,=20°C), respectively, and a,,.,r, is the temperature coefficient at temperature T,.
However, over wide ranges of temperatures, the linear relationship of this formula is not
applicable. Consequently, knowing p,,., cannot be used to determine the electrical
resistivity for temperatures less than -80°C (193 K).

Let us look now at the general behavior of the electrical resistivity of manganin
alloys. This electrical behavior has been shown to decrease with temperature for
temperatures lower than 20°C (Metal Handbook, 9™ ed., 1980). Therefore a conservative
value for the resistivity at a temperature range of [4-80 K] could be the resistivity at -
80°C (193 K). This resistivity of manganin at -80°C, p,,,., s is calculated using p,,.,,, and
a,,. in Eq. (3.2.5), with T,=20°C and T,=-80°C. We obtain

Ptecrs0 = 4.814x107 Q-m .
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The volumetric electrical source for the manganin thermal bridge, S,.., can then be
determined using Eq. (3.2.4),
Seen = 5.20x10° W/m’ .

This Joule heating is assumed constant within the manganin wires, that is S,,, is a
constant at each grid point. Recall that for the HTS thermal bridges, S,,, equals zero.

It is important to note that, a priori, the resistance self-heating through the manganin
wires should affect neither the heat load on the cryogen, nor the temperature distribution
along the thermal bridge. Indeed, with a volume of 4.6x10° m’ for the 152.4 mm long
manganin thermal bridge, the Joule heating term is about 10"° W for an applied current
of 1 pA. The comparison of this generated heat source with the heat input of 10° W
(Lee, 1994) at the warm end of this 152.4 mm long manganin thermal bridge makes the

Joule heating term insignificant. This result was verified numerically using ORTHO3D.

3.2.4 Results and Discussion

The Fortran subroutines HTS.FOR (Appendix A) and MANG.FOR (Appendix B)
were written as the adapt subroutines of ORTHO3D to solve this steady-state conductive
heat transfer problem for the five combinations of HTS thermal bridges and for the
manganin thermal bridge. In these subroutines, the physical parameters of the models
such as the geometry, the boundary conditions, the conductivities and the volumetric heat
source term for the manganin wires, are defined. The results are the temperature
distributions within the thermal bridges and the conductive heat load on the cryogen by
each thermal bridge.
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The convergence of the conductive mathematical models is discussed in the first
subsection. The complete results, obtained using ORTHO3D without the consideration
of the Joule heating in the manganin wires, have actually already been given and largely
discussed by Scott and Lee (1994). Therefore, only the results which have been shown
to minimize the cryogen evaporation, are provided with brief comments in the final

subsection.

3.2.4.1 Convergence of the Conductive Mathematical Models

Several parameters were studied in the convergence analysis of the models. These
are the grid size, the initial temperature distribution along the thermal bridges, the energy
balance of the domain and the number of iterations used by the solver.

The grid refinement of the domain examined has to be performed cautiously. Indeed,
the aim is to obtain a good numerical accuracy with the fewest grid points possible. This
allows for the saving of computational resources. The grid size should be homogeneous
in the three directions; that is the length, width and thickness of each control volume
should be in the same range of dimensions. In this research, the thermal bridges are
characterized by a large aspect ratio, which is defined by the ratio of the length of the
thermal bridge over its thickness. For instance, the value of the aspect ratio of the 152.4
mm long HTS thermal bridges is one thousand when calculated with respect to the
thickness of the substrate. This large value shows the importance of the resolution in the
x direction in order to obtain a reasonable aspect ratio for each control volume and hence

an homogeneous grid size. The grid was tested by running the HTS models with a
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different resolution in the x direction and with the same resolution in the y and z
directions (7 X 5 or 6 when the models contain a buffer layer). It was found that one
hundred control volumes in the x direction provided trade-off between the numerical
accuracy obtained and the computing time required for this grid size. The numerical
accuracy was considered reasonable when both the temperature at the warm end of the
thermal bridges reached 80 K (z 0.2 K) and the temperature gradient in the z direction
was less than 0.2 K. The aspect ratio of the control volumes in the substrate becomes 30
for one hundred control volumes in the x direction.

The grid was refined to 100 X 7 X 5 (or 6 in the case of a buffer layer between the
substrate and the superconductor) for the HTS thermal bridges; for the manganin thermal
bridge, the grid size used is 100 x 4 X 4.

Another prominent parameter in the convergence of the models is the selection of
accurate initial guessed temperatures. In this research, this selection is important not only
because of the nonlinearity of the conduction problem but also because of the extremely
low thermal conductivity values of the materials at cryogenic temperatures (Lee, 1994).
To provide the most accurate initial temperatures along the thermal bridges, the
temperature distribution of the combination YBCO/FSI, previously obtained using the
softwares PATRAN and SINDA (Lee, 1994), was implemented in each model as a
function of the length of the thermal bridge. This initial temperature distribution provided
a good point of departure for the calculation by the solver of the material thermal

conductivities at each grid point. This also had the advantage of improving the
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convergence speed of the models.

It is strongly advised by the user in the adapt subroutine (Nelson, 1994) to implement
a convergence criterion specific to the problem studied. The convergence criterion chosen
in this work is based on the change in the conductive heat load transferred out of the
domain. When the change in this heat output becomes negligible (less than 10%), the
solution is considered to be converged. At this point, the computation of a second
criterion based on an overall energy balance could be appreciated as a double-check of
convergence. An overall energy balance, E,, is defined by

Epy = Qo Qpn » (3.2.6)
where Q,, and Q,, are the heat transferred in and out of the domain and Q),,, is the heat
generated in the domain, as shown by Figure 3.2.3. A useful double-check is to compute
the absolute value of the ratio E,, over Q,. When convergence is reached with respect
to the first convergence criterion, the value of |E,,,,/Q,.,,| should be very small.
Numerically, |E,./Q, | was about 10° for the HTS thermal bridges and about 10" for
the manganin thermal bridge after an average of twelve iterations for each model. These
values show that convergence has been reached for each model.

The last parameter of interest in the convergence of the models is the number of inner
iterations, NTC, used by the solver. The inner iterations in the program have to be
distinguished from the outer iterations. The inner iterations are applied to solve the
algebraic equations for a specific temperature distribution, whereas the outer iterations are
applied to update the temperature distribution. For the first outer iterations, NTC reached

generally NTIMES which is the maximum number of inner iterations allowed in the
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solver. This behavior is normal for nonlinear problems. However, as more outer
iterations were performed and convergence was approached, the number of inner iterations
became less than NTIMES. This decrease in the NTC values indicates that the models

are not only converged but are also properly formulated.

3.2.42 Temperature Distributions and Conductive Heat Load on the Cryogen

As mentioned earlier, the results for the temperature distributions and conductive heat
load on the cryogen, without the consideration of the Joule heating in the manganin wires,
have been provided and discussed in detail by Scott and Lee (1994). Although the
manganin mathematical model, presented in Section 3.2.3, includes a Joule heating term,
the results for manganin were not affected by this volumetric heat source, as expected.
Recall that the current for the envisioned application is quite low (1 pA) and develops an
insignificant heat source. This negligible Joule heating source has been previously
observed by Caton and Selim (1992) for the same experimental conditions as those of this
research. The results presented by Scott and Lee for the manganin wires can therefore
be considered to represent the effective conductive heat transfer through the wires.

Lee (1994) studied the effect of both the length of the thermal bridges (101.6 mm and
152.4 mm) and the input heat flux at the warm end on the temperature distributions and
on the conductive heat load on the cryogen. Lee showed that longer thermal bridges and
lower input heat fluxes generate lower heat loads, as one would expect. A general result
of Lee's study is that the substrate material is the largest contributor to the heat transfer

through the HTS-substrate combination.
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The heat load on the cryogen was shown to be minimum for the 152.4 mm long
thermal bridges. The results obtained in this case (Scott and Lee, 1994) are presented
next. Figure 3.2.4 shows the temperature distribution for each conductive model. The
temperature distribution is a function of the length of the thermal bridge (x direction) but
is independent of the y and z directions of the model. This result validates the one-
dimensional parallel flow assumption made in the calculation of the input heat flux at the
warm end (Lee, 1994). The temperature distribution is required for the estimation of the
thermal conductivities; this is developed in Chapter 4.

Table 3.2.1 summarizes for each model the heat load on the cryogen, the percentage
of heat load displayed and the extended life expected for the satellite on a five-year
mission. One can see that the heat load on the cryogen by four of the five HTS models
represents less than fifteen percent of the total heat load on the cryogen, while the
manganin model produces a heat load of about twenty percent. These particular HTS

Table 3.2.1. Heat Load on the Cryogen, Percentage of Heat Load Displayed and

Extended life on a Five-year Mission for the Different Types of 152.4 mm
Long Thermal Bridges (Scott and Lee, 1994).

Manganin | YBCO/ | BSCCO/ | YBCO/ | YBCO/ { BSCCO/
YSZ YSZ GREEN FSI FSI
Heat Load on the 1.00E-3 | 7.48E-4 | 5.89E-4 | 3.74E-3 | 4.03E-4 | 2.44E-4
Cryogen (W)
Percentage of Heat 20.0 149 11.7 74.7 8.1 49
load (%)
Extended Life on a 5-
year Mission 0.0 +3.0 +4.9 -32.8 +7.2 +9.1
(months)
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thermal bridges are therefore potential replacements for the manganin wires as electronic

leads in cryogenic infrared sensor satellites.

3.3 Evaluation of the Radiative Heat Source on the HTS Thermal Bridges

Let us now examine the heat transfer assumptions made in the conduction analysis.
In Lee's experimental design, described in Section 3.1, convection and solar radiation can
both be neglected because of the vacuum environment of 6.8 atm and the protective
shielding on the spacecraft, respectively. But no reliable assumption can be made about
the radiative exchange within the thermal bridge housing area. In reality, radiation could
affect the conductive heat load on the cryogen calculated for the high-temperature
superconductor thermal bridges. The goal of the following investigation is to conduct a
radiant interchange analysis within a high-temperature superconductor housing area and
to determine if neglecting radiation in the conduction analysis is a valid assumption.

The first subsection focuses on describing the radiation problem. The next subsection
is devoted to the theoretical developments used in a Monte-Carlo analysis to determine
the distribution factors in the enclosure, and the radiative heat fluxes. Recall that the
distribution factors reveal the radiative exchange between the surfaces within the
enclosure. The results are provided and discussed in the final subsection. The
distribution factors and the radiative heat fluxes were computed using the programs

MC.FOR (Appendix C) and TQ.FOR (Appendix D), respectively.
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33.1 Problem Description

To study the radiant interchange within an HTS isolator housing area, a specific
enclosure was defined and divided into n surfaces. Either the temperature distribution or
the heat flux distribution was specified on each surface. The enclosure is described in
detail in the first part of this subsection. Discussed next is the estimation of the radiative
properties, the emissivity, absorptivity and reflectivity ratio, of the materials in the
enclosure. The surfaces were assumed to be gray and diffuse emitters which allowed the
emissivity and absorptivity to be equal. The emissivities were estimated using the
electromagnetic theory applied to radiative-property estimation. Because no procedure
was found to predict the reflectivity ratios, these were evaluated based on reasonable

estimated values.

3.3.1.1 Description of the Enclosure

Since the thermal housing area (see Figure 3.1.2) is symmetric with respect to the
three separate chambers, only a single housing chamber needed to be analyzed. It has the
shape of the third of a cylinder, as shown by Figure 3.3.1. The housing wall material is
pure copper (copper OFHC). The thermal bridge was approximated as the substrate
material alone. This simplification is acceptable geometrically because the HTS material
printed on the substrate is very thin. The three different substrates, Fused Silica (FSI),
Yttrium Stabilized Zirconia (YSZ) and Green Phase (GREEN), studied in the conduction
analysis, were used. The surface numbering scheme is presented in Figure 3.3.2. The

single housing chamber was divided into five surfaces: surfaces 1 and 2 are the surfaces
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isolating the single housing chamber from the other two; surface 3 is the cylindrical wall
and surfaces 4 and 5 are the bottom and top surfaces of the chamber, respectively.
Because the temperatures or heat fluxes are uniform on the surfaces of the single housing
chamber, these surfaces were not subdivided into smaller areas. The substrate material,
however, was subdivided into several horizontal rings, denoted by nrings. Each ring has
four surfaces. The enclosure contains »n surfaces, where n is given by

n =5 + 4(nrings) . (3.3.1)
Note that the total area of the surfaces of the single housing chamber is much larger than
the total area of the surfaces of the substrate material. This factor will be important in
the interpretation of the radiant interchange results since the area parameter is taken into
account in the calculation of the distribution factors.

The boundary conditions were specified on each surface. Because surfaces 1 and 2
play the role of isolator between the three single vacuum chambers, the flux is zero on
these surfaces. For the other surfaces, the temperatures are known. On surface 3, the
cylindrical wall, the temperature is assumed fixed at 30 K. The temperature at the end
walls of the chamber are 4 K and 80 K, respectively. Since the substrate material is
assumed to be bonded to the end walls of the cylinder, its temperature distribution varies
from 4 K to 80 K. The temperature distribution obtained for the combination
superconductor/substrate, using the finite difference program ORTHO?3D, was adopted for
the substrate temperature. This is appropriate because in the conduction analysis, the
substrate has been shown to have the most effect on the temperature distribution of the

combination. Using a polynomial fit, the temperature distribution of each substrate was
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approximated as a function of the length of the thermal bridge. Polynomial fits were
performed on the combinations YBCO/GREEN, BSCCO/FSI, and BSCCO/YSZ. The
combinations BSCCO/FSI and BSCCO/YSZ were chosen for the substrates FSI and YSZ,
respectively, because, from the conduction analysis, these generate less heat loads on the
cryogen than the combinations YBCO/FSI and YBCO/YSZ. Consequently, when
comparing the radiative heat source with the conductive heat source generated on the
cryogen, the results will be conservative.

To complete the description of the enclosure, the surface radiative properties must be
discussed. The basic radiative properties used in a radiant interchange analysis are the
emissivity and absorptivity. Since the radiant interchange is modeled to account for
mixed specular and diffuse reflections, the reflectivity ratio of each surface must also be

known. The reflectivity ratio R is defined by

R-£Z_, (332)
g+t

where 0’ is the specular component of the reflectivity and o is the diffuse component of
the reflectivity. Unfortunately, a literature review was not able to yield the radiative
properties of the specific substrate materials used in this research. This points out the
lack of information in this area. Actually, we see that on one hand there has been a
considerable increase of work in the radiation analysis field, but on the other hand
insufficient work has been done in determining radiative properties. Hopefully within the
next few years, more laboratories will be established for conducting such experiments.

Until then, the properties can only be estimated.

50



3.3.1.2 Estimation of the Radiative Properties

The temperature in the enclosure varies from 4 K to 80 K. Referring to the
hemispherical spectral emissive power of a blackbody (Siegel and Howell, 1992), in this
temperature range the spectrum of the electromagnetic radiation within the enclosure
should be dominated by long wavelengths (IR). Emission, absorption and reflection occur
then in the same range of wavelengths for all surfaces. Therefore this problem is
assumed to be independent of wavelength; or in other words, it is assumed that the
surfaces are gray. This assumption could also have been concluded by simply considering
the maximum temperature difference in the enclosure. Indeed, with a maximum
temperature difference of "only" 76 K (compared to the temperature difference existing
between the sun and the earth), the range of wavelengths at which each surface emits is
expected to be roughly the same for all surfaces.

By applying the gray assumption, directional spectral radiative properties are
simplified to directional properties. We can then write for the emissivity,

e (LT0.0) = €(T00) , (3.3.3)

and for the absorptivity,

a’A(A,T,O,cb) = a/(T,0,9) . (3.3.4)
Now from Kirchhoff's law,

€(TH,9) = &/(TH9) (3.3.5)

or more specifically

€ (T9-0,8) = o (T,0-00) . (3.3.6)

Equation (3.3.6) is a useful result because usually only the normal directional properties
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are given in the literature. In addition, all surfaces in the enclosure are assumed to be
diffuse emitters, which is equivalent to saying that the total directional incident intensity
of radiation is independent of direction,

i’ (T0,.8) = i'(T) . (3.3.7)

It can be shown that

[ (T.8,-0.8)i'(T)cosbde,

a(T) = = = (7). (3.3.8)
f i’(T)cosbdw,
27

Therefore, only the emissivity, for which more information is given in the literature, needs
to be estimated.

The electromagnetic theory applied to radiative-property prediction was used to
estimate the emissivity of both the substrate material and the copper. This theory is based
on the wave-surface interaction analysis, assuming an ideal interaction between the
incident electromagnetic wave and the surface (Siegel and Howell, 1992). It has two
limitations for practical calculations, which are the restriction to wavelengths greater than
the visible spectrum and the application only for pure substances with ideally smooth
surfaces. The first limitation is completely respected because the electromagnetic
radiation within the enclosure is in the long wavelength region as previously explained.
However, with respect to the second limitation, the effects of surface conditions of the
copper and the substrate material on their radiative properties have to be neglected. This
assumption is reasonable for the pure copper used in this research, which can be

considered to be a highly polished copper. In the case of the substrate material, however,
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the assumption of neglecting the effects of surface conditions could be responsible for
large variations between the actual emissivity and the theoretical predicted emissivity.

The electromagnetic theory predicts the relations between the hemispherical and the
normal emissivities. These relations are provided by Siegel and Howell (1992) for
dielectric materials (Figure 4.7.b p. 116) and for metals (Figure 4.10.b p. 122). To
estimate the unknown emissivities of the materials used in the enclosure, these relations
were applied considering the substrate as a dielectric material and the copper as a metal.
The normal emissivity (¢’,) of another ceramic material, the magnesia (MgO) found in the
literature (Siegel and Howell, 1992; Incropera and De Witt, 1990), was adopted for the
substrate (€', € [0.7-0.9]). In the case of the copper, the normal emissivity of a highly
polished copper was used (€', € [0.01-0.02]). The emissivities of the substrate and the
copper were predicted to be in the ranges [0.7-0.85] and [0.013-0.025], respectively.

Because no method was found to provide an estimation of the reflectivity ratio R
(=£°1(p*+ %), reasonable estimates from a professional in radiation heat transfer, Dr. J.R.
Mahan (1994), were used.

Table 3.3.1 summarizes the predicted radiative propertics. Nominal, minimum and
maximum values are given for both materials (copper and substrate). These different
values of the radiative properties will permit the study of the influence of the radiative
properties in the problem. The percentage of deviation for the computed radiative heat
flux on the substrate material, between the minimum and the maximum values of the
radiative properties, is of interest. Table 3.3.1 shows the considerable difference between
the radiative properties of the copper and those of the substrate material. The emissivity

53



Table 3.3.1. Predicted Radiative Properties of the Single Housing Chamber Material
(Copper) and of the Substrate Material.

Emissivity € Absorptivity a Reflectivity ratio R
a R, R... R,..

max min

min enom 6mw: Qi anom

Substrate| 0.70 ( 0.80 | 0.85 )| 0.70 | 0.80 | 085 | 0.10 | 0.15 | 0.20
Copper (| 0.013 | 0.020 | 0.025 || 0.013 | 0.020 | 0.025 | 0.90 | 0.95 1.00

(and absorptivity) of the copper is shown to be much smaller than the emissivity (and
absorptivity) of the substrate material, whereas the reflectivity p of the copper is much
higher (p=1-a). From this, large distribution factors for the surfaces of the substrate
material will be expected in the Monte-Carlo analysis of the enclosure. Recall that the
distribution factor D; represents the fraction of diffusely emitted radiation from surface
i that is absorbed by surface j due to direct radiation and to all directional diffuse and
specular reflections. However, the considerable difference between the total areas of the
surfaces made of copper and those made of substrate material is also directly proportional
in the distribution factor solution. Therefore no accurate conclusion can be anticipated
from the distribution factor results.

Note that since the three substrate materials studied in this research have the same
estimated radiative properties, the variation in their respective radiative heat loads will be

a result of the variation in their temperature distributions.

54



3.3.2 Monte-Carlo Formulation

Now that the enclosure has been defined along with its physical properties, the next
step is to analyze the radiation exchange between the surface elements. The radiant
interchange model has to account for mixed specular and diffuse reflection. Furthermore
it must have the ability to treat the specific geometry of the enclosure. With these
required conditions, the Monte-Carlo method was chosen to model the present radiative
problem.

The analysis of the radiation exchange between the surface elements of the enclosure
was performed in two phases. First the distribution factors were computed using the
Monte-Carlo method and second, the distribution factor results were used in calculating

the radiative heat flux supplied to each surface.

3.3.2.1 Distribution Factors

The Monte-Carlo method is a statistical numerical method which models radiation by
following the life of discrete energy bundles from emission to absorption using the
probabilistic interpretation of the surface properties. The Monte-Carlo approach is
straightforward and consists of six basic steps that have been explained in detail by, for
example, Bongiovi (1993). Figure 3.3.3 provides a flow chart for the procedure.
Distribution factors D;; are calculated by counting the number of energy bundles emitted
from each surface i (counter N, in Figure 3.3.3) and the number of those absorbed by each
surface j (counter N, in Figure 3.3.3). The solution converges if a sufficiently large

number (depending on the problem) of energy bundles has been emitted. Consequently,
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Figure 3.3.3. Flow Chart for the Monte-Carlo Procedure.
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this procedure has the disadvantage of sometimes requiring an excessive computer CPU
time. Thus, engineering judgment is necessary to settle compromises between the size
and number of surface elements and the number of energy bundles emitted.

The Monte-Carlo analysis of the enclosure was performed by the Fortran code
MC.FOR (see Appendix C). The output provided the distribution factors D;; characteristic
of the radiative exchange within the enclosure. The purpose of computing the distribution
factors in the enclosure was to determine the radiative heat flux supplied to each surface,
especially to the substrate material and to surface 4 which is in contact with the cold tip
disk at a temperature of 4 K in the experimental design (see Figures 3.1.3 and 3.3.2).

A method to check convergence of the distribution factors is to calculate the weighted

error E. From reciprocity,

eAD; = e)A,D], . (3.3.9)
Summing this result over j ,
Ele,A,Dq = .szqiDﬁ , i=1,2,...n . (3.3.10)
J I

From the conservation of energy,

=D. =1, i=12,..n . (3.3.11)

Therefore,

- SedD. , i-12,..n, (3.3.12)
;= 2eAD;, =1.L.n

and the error ¢; on each surface i is
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e - 3P g (3.3.13)
€

i1 €A,

The weighted error E is then

TeA,

E=2__ (3.3.14)
zAi
i=1

The error E should decrease as convergence is obtained or, in other words, as the number

of energy bundle increases.

3.3.2.2 Radiative Heat Flux
The radiative heat flux @, (in watts) on surface i can be defined as the difference
between the emitted and absorbed radiation by surface i. When Q, is negative, surface
i globally absorbs energy and when Q, is positive, surface i globally emits energy. In the
case of the enclosure described in this study, which consists of n diffusely emitting and
absorbing, diffuse-specularly reflecting, gray, opaque surfaces, the radiation emitted by
surface i at temperature T; with area A, and emissivity ¢, is
Qipmis = A£0T (3.3.15)
where ¢ is the Stefan-Boltzmann constant (0=5.6696x10® W/m?-K*).
Using the distribution factors, the radiation emitted by surface j at temperature T, with
area A; and emissivity €; and absorbed by surface i is
Qs = A0TD; . (3.3.16)
Then summing over j gives the total radiation absorbed by surface i,
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- 4
Oy = R AZOTD; (33.17)
Applying reciprocity (see Eq. (3.3.9)),
Q‘.ﬂbs = jglA‘g‘gTj“Dij . (3.3.18)

The radiative heat flux Q; on surface i can therefore be expressed as

0 =0 O - (3.3.19)
Substituting Q;,,, and Q; 4
Q, - AeoT} - Y AeoT D, i=12,..n . (3.3.20)
1

Introducing the Kronecker delta function 8,-, simplifies the flux to
n
Qi - ZI:AFFTJ“(SU_DU) ’ i=1’2$"°’n . (33.21)
i

When all surfaces in an enclosure have a specified temperature, the radiative heat
fluxes are then easily solved by using Eq. (3.3.21). However, in this study, the enclosure
contains two surfaces (surfaces 1 and 2, see Section 3.3.1) with a specified heat flux. In
this case, the unknown temperatures must first be determined before solving for the
unknown heat fluxes. A general solution was written assuming that in the enclosure of
interest, N surfaces have specified heat flux and (n-N) surfaces have specified
temperatures. Therefore, the radiative heat flux Q; is known for 1<i<N, and the
temperature T, is known for N+1<i<n.

Using Eq. (3.3.21), for 1<i<N, we can write
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Q. N n

= 8, -D )T, + -D)T* . (3.3.22)
A’E'-O o ( ik lk) k ]%1( a;) j
Rearranging,
- . 2 e
8, DT, = L+ D.T", i-12,.,N . (3.3.23)
;( ik k) k A,f,ﬂ }=NE+1 j*j
If we define
N
U, =% 6,D,), i-12,.,N, (3.3.24)
k=1
and
v.- 2 .Y, 2N, (3.325)
T Ago iy U
Equation (3.3.23) yields
U, [Tk‘] = V,.j , i=1,2,..N , (3.3.26)

where the summations over k (from 1 to N) and over j (from N+1 to n) are implied by
the repeated subscripts. This matrix form allows us to solve for the unknown
temperatures T, by inverting the U, matrix. Going back to our specific case where T, and
T, are unknown, Eq. (3.3.26) is applied for N=2. The unknown radiative heat fluxes Q,
can then be determined using Eq. (3.3.21).

The final objective is to determine whether or not the radiative heat source is a
significant source of heat load on the cryogen. In doing so, it is interesting to consider
four different radiative heat loads, as seen in Figure 3.3.4, and to compare them with the

conductive heat load supplied to the cryogen. In the first case, the radiative heat load
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(Qraibo) ON the bottom of the substrate (T=4 K) from the entire enclosure is analyzed.
Then in the second case the radiative heat load (Q, 4.8, On the bottom of the substrate
(T=4 K) from the top of the substrate (7=80 K) is considered. The radiative heat load
(Qraaior) ON the entire substrate from the entire enclosure is studied in the third case.
Eventually, in the final case the radiative heat load (Q,,,s,) on surface 4 (bottom wall of
the housing chamber at 4 K) from surface 5 (top wall of the housing chamber at 80 K)
is calculated. The computation of these four radiative heat loads is described below.
Recall that the substrate is divided into several rings (see Figure 3.3.2); and a ring is
constituted by 4 surfaces. The bottom of the substrate is the first ring (surfaces 6,
6+nrings, 6+2nrings, 6+3nrings) and the top of the substrate is the last ring (surfaces
6+nrings-1, 6+2nrings-1, 6+3nrings-1, 6+4nrings-1). In this notation, "2nrings", for
example, implies a multiplication of "nrings" by "2". It is important to point out that the
radiative heat loads represented by cases 1 and 2 are arbitrary as these heat loads depend
on the number and size of the rings in the substrate material, whereas the radiative heat
loads represented by cases 3 and 4 are absolute values. Therefore, cases 3 and 4 will be
more meaningful than the two first cases in the interpretation of the importance of
radiation on the cryogenic heat load.

For the first case we define Q,,,,,, as

Q itsor = Q(6)+Q(6+nrings)+Q(6+2nrings)+Q(6+3nrings) . (3.3.27)

Then for the second case Q,.;..ps is described by

de—topbot = Qbo:,erm't_ Qtopbambs ’ (3.3.28)

where Q,,,.; is the radiation emitted by the bottom of the substrate (see Eq. (3.3.15)),
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and Q. poass iS the radiation emitted by the top of the substrate and absorbed by the

bottom (see Eq. (3.3.16)). Substituting,

Q i -topbor = ‘Z[A,E,UT,-‘ - Ej:M.fPT,-‘D.;] : (3.3.29)

where i=6, 6+nrings, 6+2nrings, 6+3nrings, and j=6+nrings-1, 6+2nrings-1, 6+3nrings-1,

6+4nrings-1. Rearranging,

Qrusoppn = L A€0 [T TD] (3.3.30)
! J

where the summations over i and j are specified above.

For the third case Q, ., is stated as

de—m = iQ(’) 3 (3331)
i=6 .

where the surfaces 6 to n are those which constitute the substrate material.
Finally, for the fourth case Q,, s is expressed as

Qraiss = Loemi~ Psaans » (3.3.32)
where Q, ..., is the radiation emitted by surface 4 (see Eq. (3.3.15)), and Qs ,, is the

radiation emitted by surface 5 and absorbed by surface 4 (see Eq. (3.3.16)). Substituting,

- AeolT} - TSD,] . (3.3.33)

Qri-s4
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3.3.3 Results and Discussion

This subsection is devoted to the results obtained from the radiant interchange
analysis within the enclosure described in Section 3.3.1. The results for the distribution
factors, determined using the program MC.FOR (Appendix C), are discussed first. Then
the results for the four radiative heat loads described in the previous section and

calculated using the program TQ.FOR(Appendix D), are analyzed.

3.3.3.1 Results of the Distribution Factors

In the next subsections, the convergence and symmetry of the solution of the
distribution factors and the influence of the estimated radiative properties are carefully
examined. Note that to analyze the distribution factors, the substrate was not divided into
several rings. Therefore nrings equals 1 and then the total number of surfaces n in the

enclosure is nine. This case was chosen because it requires less computing time.

3.3.3.1.1 Convergence of the Distribution Factors

First let us be sure that the solution for the distribution factors D, converges before
analyzing the heat flux. The convergence is checked by calculating the weighted error
E using Eq. (3.3.14). Since the solution converges if a sufficiently large number of
energy bundles has been emitted, the error E should decrease with the increase of the
number of bundles. This behavior is outlined by Figure 3.3.5. As expected, the slope of
the decrease of E is very large for small numbers of bundles emitted. Then the slope

decreases and becomes very slight after 100,000 energy bundles have been emitted
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(E=4.55 percent). For the emission of a million bundles, the weighted error has decreased
to 4.44 percent. These results were obtained using the nominal radiative properties. The
weighted error was found to be slightly smaller for the maximum values of the properties
and slightly larger for the minimum values of the properties. This phenomenon is logical
because the minimum absorptivity of the copper corresponds to its maximum reflectivity,
and as more energy bundles are reflected, the numerical error becomes larger.

For the following runs, the number of energy bundles emitted was chosen to be
100,000 bundles. This choice allows for a reasonable compromise between the accuracy
of the solution and the long computing time required to run with a maximum absorptivity

of 0.025 for the larger surfaces (single housing chamber surfaces).

3.3.3.1.2 Respect of the Symmetry
Now let us check that the geometric symmetry in the enclosure is respected in the

distribution factors. The examples below show that, for two identical surfaces in the
enclosure, the same (% the error E) distribution factors are obtained:

D(1,1) =0.0578 ~ D(2,2) = 0.0576

D(1,2) = 0.0667 ~ D(2,1) = 0.0651

D(3,1) = 0.0721 ~ D(3,2) = 0.0740

D(9,4) = 0.0191 -~ D(8,5) =0.0189

D(9,1) = 0.0520 ~ D(8,2) = 0.0518

These results were obtained for 100,000 energy bundles emitted, using the nominal
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radiative properties. For 1,000,000 bundles emitted, the results are more accurate, as one

would expect. It can thus be concluded that the solution is symmetric.

3.3.3.1.3 Influence of the Radiative Properties on the Distribution Factors

Figure 3.3.6 shows the effects of the surface radiative property estimated values on
the distribution factors D(1,j), for nrings=1 and hence 1< j <9. The variation for D(1,j)
depends strongly on the properties. For the minimum values of the absorptivity
(@0pper=0.013 in the single housing chamber), surface 1 sees itself less than for the

nominal values (a_,,,.,=0.02) and almost half as much as for the maximum values

copper

=0.025). This behavior is expected since the value of the minimum absorptivity is

(acow""

half the value of the maximum absorptivity. For each surface, the distribution factors
obtained using the nominal properties are approximately the average between the results
obtained using the minimum properties and those obtained using the maximum properties.

An interesting result is the indirect effect of the housing chamber material properties.
The actual housing chamber material is the OFHC copper with a very low emissivity and
absorptivity, and a very high reflectivity. For the minimum values of the absorptivity or,
in other words, for the maximum values of the reflectivity (recall that p=1-a), surface 1
sees the substrate better than for larger absorptivities (smaller reflectivities) due to all the
reflections on the copper. This demonstrates the fact that a material with lower
reflectivity for the housing chamber would contribute to lower distribution factors to the
substrate and hence lower radiative heat flux on the substrate. Indeed, the lower the
distribution factors to the substrate, the lower the radiative heat flux on the substrate.
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Note, however, that the high reflectivity (low absorptivity) of the single housing chamber

material will help to obtain a low radiative heat load on surface 4 from surface 5.

3332 Results of the Radiative Heat Flux

The interpretation of the results of the radiative heat flux on the substrate and on
surface 4 is the focal point in this investigation. The influence on the radiative heat flux
of both the substrate material division into several rings and the estimated radiative
properties, is studied. The four different radiative heat loads, developed in Section
3.3.2.2, are then analyzed for the three different substrate materials studied, and compared
with the conductive heat loads generated on the cryogen by these materials. The
conductive heat loads were predicted in the conduction analysis using the finite difference
program ORTHO3D. The comparisons allow us to conclude whether or not radiation can

be neglected in the conduction analysis of the HTS thermal bridges.

3.3.3.2.1 Influence of the Number of Rings

The subdivision of the substrate material into as many rings as possible is advised
since it provides an accurate temperature distribution in the substrate. Indeed, for each
ring, the temperature is assumed uniform and its value is taken in the middle of the ring.
The results obtained for one ring in the substrate thus have no physical meaning.

The maximum number of rings studied was sixteen which, in the optimization of the
computer CPU time, gave good trade-off between the number of surfaces in the enclosure

(n=69 for nrings=16) and the number of energy bundles emitted (100,000).
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3.3.3.2.2 Influence of the Radiative Properties on the Radiative Heat Flux

A study was done on the influence of the estimated radiative properties on the
radiative heat load Q ., pbot for the fused silica substrate divided into sixteen rings.
de_bpbo‘ was described in Section 3.3.2.2 as the radiative heat load on the bottom of the
substrate (=4 K) from the top of the substrate (7=80 K). The fused silica (FSI) substrate
was preferred to the two other substrates because it generates less of a conductive heat
load.

Table 3.3.2 shows that the amount of radiation received by the bottom of the FSI
substrate from its top increases as the absorptivity of both materials, and especially the
substrate, increases. This relationship indicates that the single housing chamber material
properties (specifically the reflectivity) have less effect on the radiative heat load on the
substrate than the properties of the substrate itself. Indeed, there is a direct relationship
between the absorptivity (or the reflectivity) of the substrate and its radiative heat flux,
which is: the larger the absorptivity (the lower the reflectivity), the larger the radiative
heat flux (see Eq. (3.3.18) which gives the total radiation absorbed by surface i, and recall
Table 3.3.2. Radiative Heat Load on the Bottom of the FSI Substrate (7=4 K) from its

Top (7=80 K) for the Minimum, Nominal, and Maximum Radiative
Property Values and for nrings=16.

Estimated Minimum Nominal Maximum % difference | % difference
Values (max-nom)/ (min-nom)/
nom nom
Oratioppr W) | 9.19E-6 | 945E-6 | -9.96 E-6 54 -2.9

* Note: the negative sign means that the substrate material receives radiation.
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that € =a; in the enclosure).

To be conservative with the results, the percentage difference between the maximum
and the nominal radiative properties needs to be taken into account. This percentage
displays an increase of 5.4 percent in the radiative heat load, which is relatively small

compared to the difference between the maximum and the nominal radiative properties.

3.3.3.2.3 Importance of the Radiative Heat Source

The four different radiative heat 10ads, Q. or @rad.ioppor Prador AN Qrad s developed
in Section 3.3.2.2, were evaluated for the three substrate materials (FSI, YSZ and
GREEN) divided into sixteen rings, using the nominal radiative property values. The
radiative heat loads were compared to the conductive heat load generated on the cryogen
by each substrate. The conductive heat loads were obtained in the conduction analysis
using the finite difference program ORTHO3D. In performing these comparisons, ratios
Rad/Cond, which shows the importance of radiation over conduction, were computed.

o The first case studied, the radiative heat load (Q,.:,) on the bottom of the
substrate (=4 K) from the entire enclosure, was the worst case regarding the radiative
heat load. Table 3.3.3 shows that Q,,,,,, represents almost 30 percent of the conductive
heat load if the substrate is FSI and almost 10 percent if the substrate is YSZ. The small
percentage (1.46 percent) obtained for the GREEN substrate comes from the fact that this
substrate generates a much larger conductive heat load on the cryogen than the two other

substrates.
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* In the second case, the radiative heat 10ad (Q,4.4ps0r) from the 80 K end wall of
the substrate (last ring) to the 4 K end wall (first ring) was analyzed. Table 3.3.4 shows
that the bottom of the FSI substrate receives from its top a radiative load smaller than 3.9
percent of the conductive load flowing between the two end walls of the substrate. This
percentage decreases to 1.59 percent and 0.24 percent when the YSZ and GREEN
substrate are employed, respectively. These percentages are very small and indicate that,
compared to conduction, radiation from the top of the substrate has a very slight effect
on the bottom of the substrate.

* The third case displays the radiative heat load (Q,,;,,,) on the entire substrate from
the entire enclosure. From Table 3.3.5, it is obvious that radiation on each substrate is
negligible compared to the conduction through each substrate.

* Finally, in the fourth case the radiative heat load (Q,..s,) on surface 4 from
surface 5 is presented. Table 3.3.6 shows that this radiative source represents less than
1.7 percent of the conductive source if the substrate is FSI and is negligible if the

substrate is YSZ or GREEN.

Table 3.3.3. Radiative Heat Load on the Bottom of the Substrate (7=4 K) from the
Entire Enclosure.

Substrate FSI YSZ GREEN
Qradvr (W) -1.21 E-§ -5.69 E-5 -5.45 E-5
Qeona (W) 2.44 E-4 5.89 E-4 3.74 E-3
Ratio (%) 29.59 9.66 1.46
Rad/Cond
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Table 3.3.4. Radiative Heat Load on the Bottom of the Substrate (7=4 K) from the Top
of the Substrate (7=80 K).

Substrate FSI YSZ GREEN

Qad-toppor (W) -9.45 E-6 -9.40 E-6 9.04 E-6
Oons (W) 2.44 E-4 5.89 E-4 3.74 E-3
Ratio (%) 3.87 1.59 0.24
Rad/Cond

Table 3.3.5. Radiative Heat Load on the Entire Substrate from the Entire Enclosure.

Substrate FSI YSZ GREEN
0, udi: W) -1.46 E-6 -1.24 E-6 -1.13 E-6
Qona (W) 244 E-4 5.8 E-4 3.74 E-3
Ratio (%) 0.59 0.21 0.03
Rad/Cond
Table 3.3.6. Radiative Heat Load on Surface 4 from Surface 5.

Substrate FSI YSZ GREEN
Orasse (W) -4.07 E-6 -407 E-6 -4.07 E-6
Q.ona W) 244 E-4 5.89 E-4 3.74 E-3
Ratio (%) 1.67 0.69 0.11
Rad/Cond




The previous results show that in the first case, the radiative heat load on the bottom
of the substrate from the entire enclosure can be negligible for the Green Phase but not
for the Fused Silica and the Yttrium-Stabilized Zirconia. In the second case, the radiative
heat load applied from the top end of the substrate to the bottom end represents only 3.87
percent of the conductive heat load generated on the cryogen for the FSI substrate and
can be negligible (< 2 percent) for the YSZ and GREEN substrates. The results for the
third and fourth case are of interest because, as previously mentioned, the radiative heat
loads represented by these cases are absolute values and do not depend on the number and
size of the rings in the substrate material. The third case indicated that the radiative heat
load on the entire substrate from the entire enclosure was found to be negligible for each
substrate. Finally, the radiative heat load on surface 4 from surface 5 can be negligible
(< 2 percent) for each substrate.

Considering that the comparisons of the conductive heat load with the radiative heat
loads of the third and fourth case (Q,.;,, and Q... respectively) provide the best
information for the significance of radiation on the cryogenic heat load, it is reasonable
to conclude that neglecting radiation on the HTS thermal bridges is a valid assumption
in the conduction analysis.

An important feature also displayed by this study is the use, for the housing chamber,
of a material with lower reflectivity than the reflectivity of pure copper. A lower
reflectivity would give fewer reflections on the housing walls, and then for instance, two
rings of the substrate would not be able to "see" each other any more. This would lower

radiation on the substrate. A lower reflectivity would also make the housing walls absorb
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more radiant energy since the absorptivity would be higher (p=1-a), but they would also
emit more radiant energy (recall that a=e). The overall repercussion of using a housing
chamber material with lower reflectivity has been stressed in Section 3.3.3.1.3 when using
the maximum absorptivity values (minimum reflectivity values) to calculate the
distribution factors. The minimum reflectivity for the housing chamber material helped
to lower the distribution factors to the substrate. Thus, it is logical to assume that it
would help to lower radiation on the substrate. Consequently, it could then be possible
to obtain negligible radiative heat loads also for the first case analyzed previously. Note,
however, that in order to maintain the radiative heat load on surface 4 from surface 5
negligible, it is advised to keep the pure copper material with high reflectivity for surfaces
4 and 5 of the housing chamber.

It should be noted that since the HTS thermal bridges were approximated as the
substrate materials alone, the radiative properties of the superconductors were not taken
into account. However, the reflectivity of superconductors has been shown to be very
high (Siegel and Howell, 1992). In addition the study of the influence of the radiative
properties on the radiative heat flux showed that the larger the reflectivity of the substrate
material, the lower the radiative heat load on the substrate. Therefore, the difference
between the high reflectivity of superconductors and the predicted low reflectivity of
substrate materials is expected to affect the results on the superconductor/substrate
combinations in a positive manner, that is, it should help to obtain lower radiative heat
loads on the combinations. However, this difference is anticipated to increase the

radiative heat load on surface 4 from surface 5.
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CHAPTER 4

Thermal Conductivity Estimation of the HTS Thermal Bridges

This chapter focuses on the estimation of the thermal conductivities of the HTS
thermal bridges in the space environment. The capability to develop a methodology for
the determination of these thermal properties is a key strategy to assess the feasibility of
HTS-substrate combinations as electronic leads in infrared sensor satellite systems. Two
temperature-dependent thermal conductivity models for the HTS thermal bridges were
sought in this investigation. These allowed for the analysis of both the thermal
conductivities of the individual HTS thermal bridge materials and the effective thermal
conductivities of the HTS thermal bridges. Detailed sensitivity studies were conducted
on both thermal conductivity models. These studies resulted in the impossibility to
estimate the thermal conductivities as functions of the temperature along the thermal
bridges. Therefore, constant effective thermal conductivities were eventually estimated for
the HTS thermal bridges using the modified Box-Kanemasu estimation procedure.

The first section provides the theoretical development of the analysis used in

estimating the thermal conductivity model parameters. The results of the investigation
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for the estimation of thermal conductivities of the HTS thermal bridges are presented and

discussed in the next section.

4.1 Theoretical Considerations

In this section, the theoretical development used to analyze both the thermal
conductivities of the individual HTS thermal bridge materials and the effective thermal
conductivities of the composite HTS thermal bridges are presented. The material thermal
conductivities and the effective thermal conductivities were formulated as functions of
temperature. The estimation procedure for the thermal conductivities, a minimization
method called the modified Box-Kanemasu method, requires both calculated and
experimental temperatures. To estimate the individual thermal conductivities, that is for
the HTS and the substrate materials, or "material” thermal conductivities, the calculated
temperatures were obtained using the program ORTHO3D. The analysis of an "effective”
thermal conductivity, or the combined analysis of the material properties, allowed for the
simplification of the conductive heat transfer analysis within the thermal bridges.
Therefore, to estimate the effective thermal conductivities, the calculated temperatures
were obtained using a one-dimensional numerical scheme. In implementing the
estimation procedure (Section 4.2), simulated temperature data were generated by adding
random errors with a known variance to the temperature solution produced in the
conductive analysis (Section 3.2.4.2). Prior to the actual implementation of this

procedure, a detailed sensitivity study was performed to ensure reliable parameter
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estimates.

The first subsection focuses on the material and effective thermal conductivity
models. The second subsection provides the mathematical details of the parameter
estimation technique. The simulation of measured temperature data is discussed in the
following subsection. The final subsection describes the calculation of the sensitivity

coefficients and then details the methodology for the sensitivity analysis.

4.1.1 Thermal Conductivity Models

The capability to determine the thermal conductivities of the HTS thermal bridges
in the space environment will enable the assessment of the performance of HTS materials
as electronic leads in sensor satellites. In this investigation, mathematical models were
needed to estimate the material (eg., HTS, substrate and buffer layer if there is one) and
the effective thermal conductivities as functions of the temperature along the length of the

thermal bridges.

4.1.1.1 Thermal Conductivity Model of the HTS Thermal Bridge Materials

The HTS thermal bridges studied in this research are comprised of HTS-substrate
combinations with and without a buffer layer, depending on the substrate material used,
as described in Section 3.1. The equations and the plots of the material thermal
conductivities have been provided by Lee (1994), and can be found in Appendix E. The
thermal conductivities, k;,, were modeled as sixth-degree polynomials in temperature, that
is
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ki = BB BT B T BT B, T™+B,T° (4.1.1)
where i denotes a specific material (eg., for the BSCCO/FSI thermal bridge, i=FSI for the
FSI substrate, i=BSCCO for the BSCCO superconductor and i=buffer layer for the buffer

layer). The estimation of k; will be performed through the study of the thermal

conductivity coefficients B; (j=1,7).

4.1.1.2 Effective Thermal Conductivity Model of the HTS Thermal Bridges

The HTS thermal bridges can be described by parallel thermal circuit configurations,
as shown in Figure 4.1.1. Note that because the temperature distribution is one-
dimensional along the thermal bridges, there is no temperature gradient, and hence no
thermal resistance, between the parallel elements in the configurations. The equivalent
thermal circuit is characterized by an effective thermal resistance, Rmﬂ- Using the

thermal resistances, R, , of each element i in the network, R, 1is then expressed as
of

th;’
Rth,ﬂr i Rrh,. o
For a circuit of length L and cross-sectional area A,, the thermal conductivity, &, can

be defined from the thermal resistance, R, by the relationship

L
k=22 ,
& 4.1.3)

Combining Egs. (4.1.2) and (4.1.3), we obtain an effective thermal conductivity, kg, for

the HTS thermal bridges,
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€, !

A,
k., = EA ik, (4.1.4)

i A,
where the subscript i includes the superconductor, the substrate material, and the buffer
layer if there is one. Acu represents the total cross-sectional area of the specific thermal
bridge and is calculated from
A, _=XA. . (4.1.5)

As mentioned previously, each k; lis defined by a sixth-degree polynomial in
temperature. Therefore, k is first determined as a sixth-degree polynomial and, using
a curve fit on the temperature range investigated (4-80 K), it is then restricted to a third-
degree polynomial to account for nonnegligible coefficients in the polynomial equation
only. The effective thermal conductivities of the HTS thermal bridges are eventually
expressed as

kg = BB, T+BsT*B, T , (4.1.6)
where i denotes a specific thermal bridge. Again, the estimation of keff'_ will be
performed through the study of the parameters B; (=14).

Figure 4.1.2 shows the effective thermal conductivity, k oo’ of the thermal bridge
BSCCO/FSI with the thermal conductivities of the superconductor BSCCO, kgscco, the
substrate FSI, k., and the buffer layer (zirconia), Ky, jape- One should notice that the
effective thermal conductivity distribution is similar to the substrate thermal conductivity
distribution. This behavior validates the general result presented by Lee (1994) that the
substrate material is the dominant factor in the HTS thermal bridge. The plots and the

coefficients of the effective thermal conductivities of the five different HTS thermal
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bridges are provided in Appendix E.

The effective thermal conductivity of the HTS thermal bridges is a useful tool to
quantify the conductive heat transfer through the thermal bridges. Indeed, the
determination of the effective thermal conductivity allows us to apply the one-dimensional

conduction equation within the entire thermal bridge and to write

dT
"ok (TEL 4.1.7

where ¢" is the input heat flux at the warm end of the thermal bridge given by Lee
(1994), and T is the temperature distribution along the thermal bridge (recall that the

temperature has been shown to be one-dimensional). Integrating Eq. 4.1.7),

x T
q"[dE = [k (EME , 4.1.8)
0 4K
and then integrating Eq. (4.1.8), gives

g = BI(T—4)+£323(T2—42)+%(T3—43)+%‘1(T“—4“) . (4.1.9)

Finally, rearranging Eq. (4.1.9),

3
PoreBoms Borrg,r - gnntpysp o 4,608, @110

Equation (4.1.10), which governs the temperature distribution along the thermal bridges,
is in the form f(T) = q "x+C ,where fis a polynomial function of degree three, and C is
a constant. Because of the physics of this problem, only one root is possible for the

temperature in the range [4-80 K]. The temperature distribution can be solved for easily
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applying the bisection method. This method uses the intermediate-value theorem of
continuous functions and finds the root of a continuous function, f, in an interval [a,b].
A one-dimensional numerical scheme based on the bisection method was used to obtain
calculated temperatures in the effective thermal conductivity estimation.

It is important to point out that the temperature distributions obtained using both the

material and the effective thermal conductivity models are in good agreement.

4.1.2 Estimation of the Thermal Conductivities
The method used to estimate the thermal conductivities described in the previous
section is the modified Box-Kanemasu estimation method. This method is a direct
modification of the Gauss Linearization method (Beck and Arnold, 1977), and allows for
nonlinearities in the model. It is based on the minimization of an objective function, the
least squares function S, which can be expressed mathematically as
S = [F-T@)fY-T@)] , @111
where Y is the measured temperature vector, T(B) is the calculated temperature vector, and
B is the exact parameter vector that contains the unknown thermal conductivity
coefficients defined in Section 4.1.1. For the estimation of the thermal conductivities of
the HTS thermal bridge materials, the calculated temperatures were obtained using the
finite difference program ORTHO3D. Note that since the temperature distribution along
the thermal bridges has been found in Section 3.2.4.2 to be one dimensional, either
ORTHO3D or the original program CONDUCT (see Section 3.2.1) could have been used

to calculate temperatures. For the case of the estimation of the effective thermal
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conductivities, the calculated temperatures were determined from Eq. (4.1.10) using a one-
dimensional numerical scheme based on the bisection method. The procedure to simulate
measured temperatures is discussed later in Section 4.1.3.

In the estimation procedure, the least squares function, §, is minimized with respect

to the unknown parameters, 3, resulting in

VS = 2[-X'@)Y-T8) - 0, (4.1.12)
where X(B) is the sensitivity coefficient matrix (Beck and Arnold, 1977), and is defined
as

XB) = [V,T'@)) - (4.1.13)

The sensitivity coefficients are the derivatives of temperature with respect to the thermal
conductivity coefficients being estimated. They represent the sensitivity of the
temperature response to changes in the unknown parameters.

Because the conductive heat transfer in the HTS thermal bridges is a nonlinear
problem, Eq. (4.1.12) cannot be explicitly solved for the parameter vector 8. Therefore,
two approximations are used to linearize this equation. First, the sensitivity coefficient
matrix, X(B), is replaced with X(b), where b is an estimate of B; then the vector of
calculated temperatures, T(B), is approximated by using the first two terms of a Taylor
series of T(8) about b, which gives

T(B) = T(b)+[V,T"(b)I"(B-b) - (4.1.14)
Equation (4.1.12) then reduces to

B = b+P(b)[X T(b) (Y-T®))] , (4.1.15)

where the vector P(b) is defined as
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P(b) - [X TB)X()]" . (4.1.16)

Implementing an iterative scheme as described by Beck and Amold (1977), the estimated
parameter vector b can be eventually derived, yielding

b*D = p®., pO xTEY y-T®)] (4.1.17)
where the subscript & is the iteration number. In this iterative process, an initial estimate
b” is required. Equation (4.1.17) is known as the Gauss linearization equation.

To eliminate oscillations and nonconvergence which can sometimes occur for
nonlinear problems, the Box-Kanemasu method incorporates a scalar interpolation factor,
h, in the direction of the parameter variation. Equation (4.1.17) becomes

&) - pRp ("‘I)Agb(") , (4.1.18)
where the vector A ™ is expressed as
AB® = POXTE(Y-T®)] | (4.1.19)

At each iteration, the sum of squares, S, is approximated by a quadratic function in
h, the scalar interpolation factor. The value for & is then calculated by minimizing this
approximated form of §, giving

&) - G (k)az[ S a(")_ S ‘fk) 2G (k)a]—l , (4.1.20)

where the scalar G is defined by

G = [APOI(XTOXO)A O] . (4.1.21)
The value of the parameter « is initially set equal to one; S,® and S,® are the values of
§ at a and zero, respectively. Note that the modified Box-Kanemasu method includes a
check to ensure the continuous decrease of S from one iteration to another. This is done
by reducing & by one-half if §,® is not less than S,®. Figure 4.1.3 presents a flowchart
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Figure 4.1.3. Flow Chart for the Modified Box-Kanemasu Estimation Procedure
(Moncman, 1994).
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illustrating the modified Box-Kanemasu method.

The estimation procedure can sometimes encounter an unstable behavior resulting in
a less than 0.01 which terminates the calculations, or simply nonconvergence of the
estimates. This could be the effect of near-linear dependence of the parameter sensitivity
coefficients and/or very poor initial parameter estimates. The importance of a sensitivity
analysis prior to the estimation procedure is detailed in Section 4.1.4.

To estimate the thermal conductivity parameters of the HTS thermal bridge materials,
the subroutine KBOX3D.FOR (Appendix F) was written as the adapt subroutine of the
program ORTHO3D. For the estimation of the effective thermal conductivity parameters
of the HTS thermal bridges, a parameter estimation program called KBOXEFF.FOR
(Appendix G) was written using the bisection method to solve Eq. (4.1.10) which governs
the temperature distribution along the thermal bridges. Both KBOX3D.FOR and
KBOXEFF.FOR use the modified Box-Kanemasu method.

It should be noted that, when the temperature solution is governed by a transient
mathematical model, the concept of sequential estimation (Beck and Amold, 1977), in
which the parameters are evaluated at each time step, is generally utilized in the
parameter estimation procedure. The advantage of applying this sequential estimation
technique to transient models is that it allows the user to observe the effects of additional
data on the sequential estimates and to evaluate the adequacy of the experimental design.
Ideally, at the conclusion of an experiment, any additional data should not affect the
parameter estimates. This concept was not of interest in this research since the heat

conduction process within the thermal bridges is steady state.
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4.1.3 Simulation of Measured Temperatures

The utilization of the modified Box-Kanemasu method for the estimation of the
thermal conductivities requires experimental temperatures. As no experimental
temperature measurements are available for this research project, simulated measurements
must then be generated. This was performed by adding random errors with a known
variance to the numerical temperatures obtained in the conduction analysis using the finite
difference program ORTHO3D (Section 3.2.4.2). In doing this, temperature sensors are
assumed to be placed along the HTS thermal bridges. However, in the proposed
spaceflight experiment, only one temperature sensor is considered at each end of the
thermal bridges (Section 3.1). Furthermore, since the temperature at the cold end is fixed
at 4 K in the conductive mathematical models, temperature information for the parameter
estimation can only be obtained from the sensor at the warm end of the thermal bridges.
To meet this experimental design requirement, the parameter estimation procedure was
also conducted using calculated and measured temperatures only at the warm end of the
thermal bridges.

The program YLFOR (Appendix H) was written to simulate temperature data both
along the HTS thermal bridges and at the warm end of the thermal bridges. In this
program, normally distributed random errors with standard deviations of 0.1 K, 0.5K and
1.0 K were added to the temperature values obtained using ORTHO3D. Recall that these
temperatures were obtained using the thermal conductivities of the materials in the
conductive mathematical models (Section 3.2). Ten different sets of random errors were

used for each standard deviation, which generated a total of thirty data sets.
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4.1.4 Sensitivity Analysis

The parameter estimation procedure used in this research allows for the simultaneous
estimation of the thermal conductivity parameters. However, if the sensitivity coefficients
of these parameters are small, sufficient information might not be available to estimate
the parameters. Furthermore, if the parameters are found to be correlated, they cannot
be simultaneously estimated as independent values (Beck and Arnold, 1977). Indeed,
correlation between the parameters induces the least squares function, §, to have no
unique minimum, and therefore results in the nonconvergence of the minimization
process. From these considerations, one understands the relevance in determining not
only the magnitude of the parameters sensitivity coefficients, but also the degree of
correlation between the various parameters prior to the estimation procedure. This is done
through the analysis of the parameter sensitivity coefficients.

In the next subsections, the mathematical details inherent in the determination of the
sensitivity coefficients of the thermal conductivity parameters are first presented. Then

the methodology to carefully examine the sensitivity coefficients is discussed.

4.1.4.1 Determination of the Sensitivity Coefficients

As mentioned previously, the sensitivity coefficients represent the sensitivity of the
temperature response to changes in the unknown parameters, namely the thermal
conductivity parameters 8. In the sensitivity study, it is meaningful to examine (Beck and

Amold, 1977)
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oT"

(4.1.22)
w L,‘“ﬁ»‘o’m

’

(XB,T+)+ = B{

where (X, r,)" is the dimensionless sensitivity coefficient of the parameter B, T is the
dimensionless temperature and £#83 are all parameters other than B that remain constant.
Considering the one-dimensionality of the temperature distribution within the HTS

thermal bridges, a convenient dimensionless temperature to be used is

T-T,
T - 4.123)

where T, and T, are the temperatures at the cold (x=0) and warm end (x=L) of the thermal

bridges, respectively. Recall that Ty, is fixed at 4 K but T, depends on the value of the

parameter B. Because the sensitivity coefficients cannot be solved analytically, the term or ]

is approximated as

oT* _AT' _T'(B+8B)T'(B) (4.1.24)
B A8 AB

where T*(8) and T*(B+AB) are the dimensionless temperatures without and with the change
AB in the parameter 3, respectively. Note that T*(8) and T"(B+Ap) are nondimensionalized

with respect to T(3), that is

B TB) T(B+08) TyB)

. 2O E) regaag) - 4.1.25.a
reTe | % T eTe (412320)

T°(B)

The value for each thermal conductivity coefficient, 8, was obtained from the curve
fits of the thermal conductivity plots, which are provided in Appendix E. The change in
the parameter, AB, was chosen to represent one percent of the value of B, which gives
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AB=0.018. Equation (4.1.22) reduces then to

.. _1 [T(B+88)-T(B)
Xpr)" = 00| T,0)1,8) | (4.1.26)

The subroutine XI3D.FOR (Appendix I) was written as the adapt subroutine of the
program ORTHO3D to compute the dimensionless sensitivity coefficients of the thermal
conductivity parameters for the HTS thermal bridge materials. The sensitivity coefficients
of the effective thermal conductivity parameters for the HTS thermal bridges were

determined using the program XIEFF.FOR (Appendix J).

4.1.4.2 Methodology for the Sensitivity Analysis

The methodology used to examine the dimensionless sensitivity coefficients includes
the analysis of both the magnitude of the sensitivity coefficients and the linear
dependence between these coefficients. In case of near-linear dependence between the
sensitivity coefficients, the correlation matrix should be computed to check for any
correlation between the parameters to be estimated.

Small magnitudes (<107) for dimensionless sensitivity coefficients indicate that the
dimensionless temperature profile is insensitive to changes in a specific parameter, while
large magnitudes (>1) represent extreme sensitivity to changes in a parameter (Scott,
1994). It should be noted that the limit 107 is generally representative of the limiting
sensitivity in a given variable due to a change in a parameter. However, this limit is
flexible, especially in cases where near-linear dependence between the sensitivity

coefficients exists.
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The magnitude of the sensitivity coefficients can also be interpreted as the amount
of information about the value of the parameter available from the temperature
measurement data. Indeed, parameters estimated from data with large sensitivity
coefficients are generally more accurate than parameters estimated from data with small
sensitivity coefficients (Scott, 1994).

The second step in the careful examination of the sensitivity coefficients is to
consider the possibility of linear dependence between the sensitivity coefficients. The
initial step to investigate linear dependence is to simply plot the sensitivity coefficients
against each other. If the sensitivity coefficients appear to be linearly dependent, the
corresponding parameters are correlated and cannot be estimated simultaneously (Beck
and Amold, 1977). Again a comment is required here to point out that even if the
sensitivity coefficients are not linearly dependent over the entire range of temperatures
investigated (if the temperature is the given variable of interest), near-linear dependency
can sometimes occur in the temperature range of interest and result in inaccurate
parameter estimates.

The next step in the present methodology is to compute the correlation matrix
according to Beck and Arnold (1977) for the uncorrelated parameters determined by the
plots of the sensitivity coefficients. This is especially important when a plot of the
sensitivity coefficients is inconclusive. The diagonal terms of the correlation matrix are
all unity and the off-diagonal terms must be in the interval [-1,1]. Whenever all the off-
diagonal terms exceed 0.9 in magnitude, the estimates are highly correlated and tend to

be inaccurate. One reason this could occur is that near-linear dependence between the
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sensitivity coefficients exits, causing the parameters to be correlated. Note that the
calculation of the correlation matrix should always be the final step in the investigation
of linear dependence between the sensitivity coefficients. Indeed, viewing the sensitivity
coefficients against each other in an initial step gives insight on the proportionality of
these coefficients over the entire range of temperatures investigated, whereas the off-
diagonal of the correlation matrix provides only an overall number. The subroutine
KBOX3D.FOR and the program KBOXEFF.FOR, both described in Section 4.1.2, were
used to compute the correlation matrix for the estimation of the thermal conductivity
coefficients of the HTS thermal bridge materials and the estimation of the effective
thermal conductivity coefficients of the HTS thermal bridges, respectively.

The analysis of the sensitivity coefficient magnitude and linear dependence should
be concluded with the determination of which parameters are to be estimated. On- the
basis of the previous developments, uncorrelated parameters with the highest sensitivity

coefficients should be chosen to be estimated.

4.2 Results and Discussion

The results of the analysis for the estimation of both the HTS thermal bridge material
thermal conductivities and the HTS thermal bridge effective thermal conductivities are
presented and discussed in this section. Recall that these thermal conductivities are
modeled as polynomials in temperature, as described in Section 4.1.1, to account for

temperature dependence. In both models, correlations between the polynomial parameters
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are carefully examined prior to the estimation procedure. This is done through the
sensitivity analysis using the methodology detailed in Section 4.1.4.2. As both thermal
conductivity models display correlations between the parameters, simultaneous estimation
of the thermal conductivity parameters was concluded to be impossible. Therefore, the
estimation of constant effective thermal conductivities was performed for the HTS thermal
bridges.

The first subsection provides the results for the sensitivity analysis of the material
thermal conductivity model. The results for the estimation of the effective thermal
conductivities of the HTS thermal bridges are given in the next subsection. These results
include the sensitivity analysis of the effective thermal conductivity model developed in
Section 4.1.1.2, and the estimates obtained when studying the effective thermal

conductivities as constants.

4.2.1 Estimation of the Thermal Conductivities of the HTS Thermal Bridge
Materials

The material thermal conductivities are modeled as six degree polynomials in
temperature, as described by Eq. (4.1.1). The estimation of the thermal conductivity, k;,
of a specific material i in a HTS thermal bridge involves the simultaneous estimation of
the polynomial parameters B, (j=1,7). This parameter estimation problem becomes
complex as the HTS thermal bridges comprised of two, or three with the presence of a
buffer layer, materials. Before implementing the parameter estimation, the sensitivity

analysis of these multiple parameters is an imperative step to determine which parameters
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can be estimated. This analysis is performed following the methodology described

Section 4.1.4.2.

4.2.1.1 Sensitivity Analysis of the Polynomial Parameters of the Material Thermal
Conductivities

Let us first study the HTS thermal bridge BSCCO/FSI which was shown in Section
3.2.4.2 to minimize the heat load on the cryogen. Using Eq. (4.1.1), the thermal
conductivities of the substrate, k., the superconductor, kgzs-co, and the buffer layer

(zirconia), kyg., iy are respectively expressed as,

Kest = Bf]+ﬁf2T+Bf3T2+Bf4T3+Bf5T4+Bf6TS+Bf7T6 ) (4.2.1)
kpscco = Boe*Bure2T*BusT *Boos T +BisT*+ByesT 4By, T 4.2.2)
kbuﬁ'erlayr = Bzz*BzzT+Bz3T2*BZ4T3+BZ5T4+BmT5+Bz7T6 . (4.2.3)

The dimensionless sensitivity coefficients of the 21 parameters 8;, where the subscript i
denotes either FSI, BSCCO, or buffer layer and the subscript j denotes the place of the
parameter in the polynomial equation (j=1,7), are computed using Eq. (4.1.26) in the
adapt subroutine XI3D.FOR of the program ORTHO3D. The nominal values of the
parameters are provided in Appendix E. Following the methodology for the sensitivity
analysis, the magnitude of the dimensionless sensitivity coefficients is first examined.
Recall that in the magnitude investigation, the number 10 is generally representative of
the limit between small and large magnitudes. Table 4.2.1 shows that the magnitude of
the sensitivity coefficients of the parameters 8, and B,, is smaller than 107, which

indicates that the temperature response is insensitive to changes in these parameters.
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Table 4.2.1. Orders of Magnitude of the Dimensionless Sensitivity Coefficients of the
Material Thermal Conductivity Parameters for the Thermal Bridge

BSCCO/FSI.
FSI By B B By Bs Prs By
(X‘gf)+ 102 10! 10! 10! 10" 10! 10
Zirconia B. Bz sz BzJ st Bz6 Bu
(X,;z)+ 10* 103 103 103 107 10° 10*
B SCCO B bsl B bs2 B bs3 B bsd B bsS B bs6 B bs7
(Xﬂb,)" 102 10! 1 1 1 1 10!

Therefore, these parameters cannot be estimated. The smallest magnitude (107) is
obtained for the sensitivity coefficients (Xg;)*, j=2,6. This result verifies the little
influence of the buffer layer on the temperature solution of the thermal bridge
BSCCO/FSI. Figure 4.2.1 displays the sensitivity coefficients with magnitudes equal to
or larger than 10° along the thermal bridge. As one can see, the largest magnitude of the
sensitivity coefficients is obtained at the end of the thermal bridge, where the temperature
is the highest. Recall that the magnitude of the sensitivity coefficients can be interpreted
as the amount of information about the value of the parameter available from the
temperature measurement data. This behavior therefore stresses the importance of placing
in the experimental design a temperature sensor at the warm end of the thermal bridge
to acquire the most temperature information for the parameter estimation.

Figure 4.2.1 shows that the dimensionless sensitivity coefficients with magnitudes
smaller than 107" (sensitivity coefficients of the parameters B, B, B, (j=2.6) and B,,,) have

a similar distribution compared to the other sensitivity coefficients with larger magnitude.
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This indicates linear dependence (Beck and Arnold, 1977), and because of this, coupled
with the rather low magnitudes, the limit 10° was reconsidered in this investigation, as
mentioned in Section 4.1.2.2, and chosen as 10" instead. The dimensionless sensitivity
coefficients with magnitude higher than 10" are plotted along the thermal bridge in Figure
42.2. There are four groups of sensitivity coefficients with similar behavior evident in
this figure. The first group includes the sensitivity coefficients (Xgg ﬁ,b,ﬂ,ﬁ)*. This
notation refers to the sensitivity coefficients of the parameters B, By, B, and B,
respectively. The second group is comprised of the sensitivity coefficients (X 1534 5s6)
The sensitivity coefficients (Xg ;)" and (Xg.5,,)" constitute the third and fourth group,
respectively. The correlations between the sensitivity coefficients of these four groups
are shown Figures 4.2.3.a-d. The determination of corelation between sensitivity
coefficients from these plots is based on previous work on linear dependence between
sensitivity coefficients (Beck and Amold, 1977). For each group of correlated parameters,
the parameter with the highest sensitivity coefficient is chosen to be analyzed, which
gives the four parameters fB,,,, Bysss Bpssr and Byys.

In the continuation of this sensitivity analysis, the dimensionless sensitivity
coefficients of the four parameters mentioned above need to be plotted against each other
to further investigate any linear dependence. This is done in Figure 4.2.4. Note that the
use of the same scale when plotting the sensitivity coefficients against each other makes
any linear dependence between the sensitivity coefficients clearer. The results are
summarized in Table 4.2.2. A (+) sign indicates that linear dependence, or near-linear

dependence, is found and a (-) sign indicates that no linear dependence is evident. It
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Figure 4.2.3.a. Similar Behavior of the Dimensionless Sensitivity
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Figure 4.2.3.b. Similar Behavior of the Dimensionless Sensitivity
Coefficients (X p-rspeabes)*.

101



Dimensionless Sensitivity Coefficients (X pawm)*

Dimensionless Sensitivity Coefficients (X B.om)*

0.0

-0.2

-0.3

f | f e
B | BN

-0.4

0 20 40 60 80 100 120 140 160
Length Along the Thermal Bridge (mm)

Figure 4.2.3.c. Similar Behavior of the Dimensionless Sensitivity
Coefficients (X p.ne)*.
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Figure 4.2.3.d. Similar Behavior of the Dimensionless Sensitivity
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Table 4.2.2. Linear Dependence of the Dimensionless Sensitivity Coefficients of the
Material Thermal Conductivity Parameters B,,;, B,s» By.e» and B,,s for the
Thermal Bridge BSCCO/FSI. ((+) indicates linear dependence; (-) indicates
no linear dependence).

()(B)+ B bs2 B bs3 B bsd B bss
Bes +) +) +) +)

B.s; +) +) +) -)
Bhse +) (+) (+) )
Bss (+) ) ) (+)

should be noted that if the sensitivity coefficients are linearly (or near-linearly) dependent
over almost the entire range investigated except at the very beginning of the range
(smallest value for the sensitivity coefficients), linear dependence was considered. Table
4.2.2 indicates that both simultaneous estimations of the parameters f3,,; with 8,5, and 8,,,
with B, can be studied. As explained in the methodology for the sensitivity coefﬁéicnt
analysis, uncorrelated parameters with the highest sensitivity coefficients should be
chosen. This results in the choice of the parameters f3,,, and B,,s.

To conclude the present sensitivity analysis, the correlation matrix according to Beck
and Amold (1977) should be computed prior to the simultaneous estimation of the
parameters f3,,, and 8,.;. This is of importance in this investigation because near-linear
dependence could exist between the sensitivity coefficients (Xg,,)* and (Xg,,s)*, as seen
in Figure 4.2.4. The computation of the correlation matrix was performed using the adapt
subroutine KBOX3D.FOR of the program ORTHO3D. Ten sets of calculated and

measured temperatures simulated with a standard deviation of 1.0 K along the thermal
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bridge, were utilized. In the first simulated experiment, the off-diagonal term of the
correlation matrix was found to be 0.987 which exceeded the limit 0.9 given by Beck and
Arnold (1977). This result indicates that the estimates are highly correlated and tend to
be inaccurate. Note, however, that the value of the estimates for the parameters B,,, and
B,.s obtained for this first estimation were 1.241x10* and -2.096x10°, respectively, and
were very close to the nominal values of these parameters (1.243x10* and -2.100x10°,
for B,,, and B,,; respectively, provided in Appendix E ).

In the other simulated experiments, the estimation procedure was terminated because
the value of the variable a was less than 0.01 in the modified Box-Kanemasu method (see
Figure 4.1.3). This stresses the instability of the simultaneous estimation of B,., and B,,s.
The correlation matrix of these experiments exhibited an off-diagonal term of about 0.988
which is slightly higher than in the first experiment. From these results, the simultaneous
estimation of the parameters B,,, and B,,; was concluded to be impossible. Therefore,
among the polynomial parameters described at the beginning of this analysis for the
thermal bridge BSCCO/FSI, only one parameter of a specific material could be estimated.

The correlation between the parameters describing the thermal conductivities of the
individual materials analyzed was expected. Indeed, it was improbable that the material
thermal conductivities could have been distinguished because of the similarities of the
temperature profiles when the substrate, the superconductor and the buffer layer thermal
paths are considered separately. However, the correlation between the parameters with
regards to the temperature was not evident. Therefore, the sensitivity analysis proved to
be a uscful tool in assessing the possibility of the parameters’ simultaneous estimation.
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Based on this analysis and on preliminary calculations, the same conclusion was
drawn for the four other HTS thermal bridges. As the estimation of one thermal
conductivity parameter for a specific material in a HTS thermal bridge was not of interest
in this research, no further investigations were conducted in the study of the individual
thermal conductivities of the HTS thermal bridge materials. It should be noted, however,
that this study would have been pursued if the simultaneous estimation of at least two
parameters, one for each material in a HTS thermal bridge, could have been performed
(these uncorrelated parameters could have then been estimated as constants for the

thermal conductivities of the corresponding materials).

4.2.2 Estimation of the Effective Thermal Conductivities of the HTS Thermal
Bridges

The effective thermal conductivities of the HTS thermal bridges were modeled as
third-degree polynomials in temperature, as described by Eq. (4.1.6). These models were
defined from the material thermal conductivity models using the equivalent thermal circuit
configurations in Section 4.1.1.2. Recall that the effective thermal conductivities were
restricted to third-degree polynomials to account for only nonnegligible coefficients in the
polynomial equations. This results in the analysis of four parameters B; (j=1,4) in the
estimation of each HTS thermal bridge effective thermal conductivities kaf.- . Proceeding
similarly as in Section 4.2.1, the sensitivity analysis of the parameters B; is performed for
each HTS thermal bridge prior to the implementation of the estimation procedure. Again,

the four parameters describing the effective thermal conductivities as functions of
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temperature were found to be correlated for each HTS thermal bridge. Therefore, the last
option available to perform an estimation of the HTS thermal bridge thermal
conductivities is to consider the effective thermal conductivities as constants.

In the first subsection, the results of the sensitivity coefficient analysis of the
effective thermal conductivity polynomial model are provided for each HTS thermal
bridge. The estimation of constant effective thermal conductivities for the HTS thermal

bridges is presented and discussed in the next subsection.

4.2.2.1 Sensitivity Analysis of the Polynomial Parameters of the Effective Thermal
Conductivities

The sensitivity analysis of the polynomial parameters of the effective thermal
conductivities presented here is similar to that of the polynomial parameters of the
material thermal conductivities conducted in the previous subsection. Once again, using
the BSCCO/FSI thermal bridge as an example, the effective thermal conductivity k =
is described by

k.. = Borr*BarTBprs T BppsT” - (4.2.4)
The dimensionless sensitivity coefficients of the four parameters B85 (j=1,4) are computed
using Eq. (4.1.26) in the program XIEFF.FOR. The nominal values of the parameters are
provided in Appendix E. Table 4.2.3 displays the magnitudes of the sensitivity
coefficients, which are higher than the general limit 10°.

The sensitivity coefficients (Xggp;)" are plotted along the length of the thermal bridge

in Figure 4.2.5. As one can see, the four sensitivity coefficients have a similar linear
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Table 4.2.3. Orders of Magnitude of the Dimensionless Sensitivity Coefficients of the
Effective Thermal Conductivity Parameters for the Thermal Bridge
BSCCO/FSL

" BSCCO/FSI || Bsr: Bsr: Bsrs Bgrs "
“ K | 107 | 10" 10" 10" |

behavior over the last one-third of the thermal bridge where the sensitivity coefficients
are the highest or, in other words, where the temperature provides the most information
for the simultaneoué estimation of the parameters B, This observation is of interest as
previous work has shown that even though the parameters are not linearly dependent over
the entire range investigated, near-linear dependency occurring in a fraction of the range
can result in inaccurate parameter estimates and in instability of the estimation procedure
(Saad, 1991).

In order to investigate linear dependence between the sensitivity coefficients, these
are plotted against each other in Figure 4.2.6. Table 4.2.4 summarizes the results. The
same notation as in Section 4.2.1 is used here. Also recall that if the sensitivity
coefficients are linearly (or near-linearly) dependent over the entire range investigated
except at the very beginning of the range, where the temperature provides the least
information, linear dependence was considered. The similar linear behavior of the
sensitivity coefficients over the last one-third of the thermal bridge, observed in Figure
4.2.5, can also be seen in Figure 4.2.6. As mentioned previously, this linear dependence
between the sensitivity coefficients for the highest temperatures could result in the

instability of the estimation procedure for the simultaneous estimation of the parameters,
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Table 4.2.4. Linear Dependence of the Dimensionless Sensitivity Coefficients of the
Effective Thermal Conductivity Parameters B4z, Bz, Bsrs» and Byg, for the
Thermal Bridge BSCCO/FSL

(XpBF)+ Bsr: Bsr: Bars Bsrs
B + (+) (+) (+)

Bsr: + (+) Q) )
Ber; (+ Q) +) +)
B (+) ) (+) +

even though they are not linearly dependent over the entire range investigated.

Table 4.2.4 indicates that both simultaneous estimations of the parameters By, with
Bsrs» and By, with Byr, can be studied as both pairs of parameters were found to be
globally uncorrelated over the range investigated. The uncorrelated parameters with the
highest sensitivity coefficients, Bsr, and Bjr;, were chosen for analysis.

The last phase to perform is to compute the correlation matrix according to Beck and
Arnold (1977). This computation was realized using the program KBOXEFF.FOR. Ten
sets of calculated and measured temperatures simulated with a standard deviation of 1.0
K along the thermal bridge, were utilized. The off-diagonal term of the correlation matrix
was found to be about 0.981 for all experiments conducted. This value, larger than the
limit 0.9 given by Beck and Amold (1977), indicates that the estimates are highly
correlated and tend to be inaccurate, as anticipated. Few experiments provided final
estimates; most of the experiments performed were actually terminated because the value

of the variable o became too small (<0.01) in the modified Box-Kanemasu method.
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This analysis concluded with the impossibility of simultaneously estimating the
polynomial parameters Bsr (=1,4), which describe the temperature dependence of the
effective thermal conductivity of the thermal bridge BSCCO/FSI. Similar analysis
concluding to the same result, were proceeded for the four other HTS thermal bridges.
The results are recapitulated below.

The polynomial equations of the effective thermal conductivities k,ﬁ”, k«ﬁ’w’ k,ﬁw
and k‘ﬁm and the nominal values of the polynomial parameters Byy;, Byg, By, and By
(j=1,4), are provided in Appendix E for the thermal bridges BSCCO/YSZ, YBCO/FSI,
YBCO/YSZ AND YBCO/GREEN, respectively. Table 4.2.5 displays the magnitude of
the dimensionless sensitivity coefficients of the effective thermal conductivity parameters
for the four HTS thermal bridges. Figures 4.2.7.a to 4.2.10.a show the sensitivity
coefficients larger than 10 in magnitude along the length of the thermal bridges. The
sensitivity coefficients are plotted against each other in Figures 4.2.7.b t0 4.2.10.b. Table
4.2.6 provides the results of the linear dependence investigation between the sensitivity
coefficients of the effective thermal conductivity parameters for the four HTS thermal
bridges. Eventually, the off-diagonal terms of the correlation matrix of the parameters
chosen to be simultaneously estimated are recapitulated in Table 4.2.7. In the estimation
procedure, instability was logically observed to increase as the off-diagonal term of the

correlation matrix approaches one.
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Dimensionless Sensitivity Coefficients (X gsy)*

Dimensionless Sensitivity Coefficients (X Byri123)*
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Length Along the Thermal Bridge (mm)

Figure 4.2.7.a. Dimensionless Sensitivity Coefficients of the Effective
Thermal Conductivity Parameters for BSCCO/YSZ.
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Figure 4.2.7.b. Linear Dependence Between the Dimensionless Sensitivity
Coefficients (X ppy-123)*.
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Dimensionless Sensitivity Coefficients (X pyr)*

Dimensionless Sensitivity Coefficients (X Byr1234)*

05

o3l - L

-

R S T e S T -

-0.1 |- \

~ . :
; S : , ; : :
03] - .: ....... i. o0 \ ...... ............. Do P P
0.5 S coe ™
~
071 - —_— BYF] S o - KRR TR
S| —— Prm ; : \\;\ ‘
o9 | | TT7T Pres NN
----- Byrs : ~
; ~
11 ' ' ' ' ‘
0 20 40 60 80 100 120 140 160

Length Along the Thermal Bridge (mm)

Figure 4.2.8.a. Dimensionless Sensitivity Coefficients of the Effective

Thermal Conductivity Parameters for YBCO/FSI.

04

: : : : —— Byr1 vs. fym
03] ---- - N e R e — BmVS.Bm

' ; : ‘ —— PByras vs. YR
-=+-- Bym vs. BYym
: » : -=+-- Byrs vs. Pym
0.2 R : L ) L . e — BYF] Vs. Bm

o1l - - o S ........ e

-1.1 -0.9 -0.7 -0.5 -03 -0.1 0.1 03

Dimensionless Sensitivity Coefficients (X PByrzi)*

Figure 4.2.8.b. Linear Dependence Between the Dimensionless Sensitivity

Coefficients (X pyr.1.234)*.
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Dimensionless Sensitivity Coefficients (X  pyy)*

Dimensionless Sensitivity Coefficients (X frvi2a4)*
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Figure 4.2.9.a. Dimensionless Sensitivity Coefficients of the Effective
Thermal Conductivity Parameters for YBCO/YSZ.
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Figure 4.2.9.b. Linear Dependence Between the Dimensionless Sensitivity
Coefficients (X pyy-1.23.4)*.
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Figure 4.2.10.a. Dimensionless Sensitivity Coefficients of the Effective
Thermal Conductivity Parameters for YBCO/GREEN.
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Figure 4.2.10.b. Linear Dependence Between the Dimensionless Sensitivity
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Table 4.2.5. Orders of Magnitude of the Dimensionless Sensitivity Coefficients of the
Effective Thermal Conductivity Parameters for the Thermal Bridges
BSCCO/YSZ, YBCO/FSI, YBCO/YSZ and YBCO/GREEN.

BSCCO/YSZ By Bsrz Bsys By
(Xgsp)* 10! 101 10" 10*
YBCO/FSI B YF! Byn B YF3 Byn
Kaye)® 102 1 10! 10
YBCO/YSZ By; By, Byys By
(Xopy)* 10 101 10" 102
YBCO/GREEN BYG} BYGZ BYGJ BY(H
(Kar)" 100 | 1 ! 107
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Table 4.2.6. Linear Dependence of the Sensitivity Coefficients of the Effective Thermal
Conductivity Parameters B3y (7=1,3), Byg» Bry» and Byg (j=1,4) for the
Thermal Bridges BSCCO/YSZ, YBCO/FSI, YBCO/YSZ and
YBCO/GREEN, respectively. ((+) indicates linear dependence; (-) indicates
no linear dependence).

L Xes” | Bon | Ban | Ban

By +) ) )
Bsr: Q) + )
Bsys ) ) (+

Kere)' || Brmi Byr, Byrs By
Byr: (+) + (+) +)
Bre: + +) ) )
Byrs (+) ) (+) (+)
Brrs (+) () (+) (+)

Xar)" By By Byys By

Brvi (+) +) (+) -)
By +) (+) ) )
Byys (+) (-) (+) +)
By ) ) (+) (+)
Xaye)' Bra: Bye: Byo; Brod
Bra: +) +) (+) (+)
Bro: (+) (+) ) )
Bros (+) ) (+) (+)
Brcs +) ) (+) (+)

*Note: the parameters underlined for each thermal bridge are the uncorrelated
parameters chosen to be simultaneously estimated.
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Table 4.2.7. Off-diagonal Terms of the Correlation Matrix of the Effective Thermal
Conductivity Parameters Chosen to be Simultaneously Estimated for the
Thermal Bridges BSCCO/YSZ, YBCO/FSI, YBCO/YSZ and

YBCO/GREEN.
BSCCO/YSZ Box Bos |
B 0.977 0987 |
Bory 0932 |
YBCO/FSI Brr:
Byrs 0.982
YBCO/YSZ B,
B,r; 0.984
YBCO/GREEN Bre:
Bros 0.982

4.2.2.2 Estimation of Constant Effective Thermal Conductivities for the HTS
Thermal Bridges

As the effective thermal conductivities of the HTS thermal bridges could not be
estimated as functions of temperature, the estimation of the effective thermal
conductivities as constants was investigated. The constant effective thermal conductivities
are estimated using the modified Box-Kanemasu method. Recall that in the parameter
estimation procedure (Section 4.1.2), calculated and measured temperatures both along the
thermal bridges and at only the warm end of the thermal bridges were to be utilized. The
measured temperatures were simulated using the program YL.FOR described in Section

4.13. Two different estimates were therefore obtained depending on whether
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temperatures along the thermal bridges or at the warm end of the thermal bridges were
employed.

The first subsection is devoted to the mathematical description of the two different
estimates obtained for the constant thermal conductivities of the HTS thermal bridges.

The next subsection discusses the results obtained for these two estimates.

42.2.2.1 Mathematical Description of the Two Constant Effective Thermal
Conductivities Estimated

The procedure to estimate the effective thermal conductivities of the HTS thermal
bridges as constants uses calculated and simulated measured temperatures both along the
thermal bridges and at only the warm end of the thermal bridges, denoted by T(x) and T,
respectively. The utilization of temperatures at the warm end of the thermal bridges was
specified to meet the experimental design requirement which includes two temperatures
sensors at both end of the thermal bridges only. Two different estimates are therefore
sought for the constant effective thermal conductivities, depending on whether 7(x) or T,
are used.

Let us describe mathematically what these two estimates represent. The estimate,
BTL’ calculated using T, represents the average value over the temperature range along
the thermal bridge of the temperature-dependent effective thermal conductivity, k(7).
Indeed, the final temperature 7 is obtained using ,,(T) over the entire temperature range

along the thermal bridge. The true value, 8 for the estimate of a constant effective

trueT, °

thermal conductivity calculated using 7;, can then be expressed as,
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f k‘ﬁ(T)dT 4.2.5)

where T, is the temperature fixed at 4 K at the cold end of the thermal bridge. Figure
4.2.11 shows the true value erL for a distribution k,,(T) which was chosen to generally
characterize the profiles of the effective thermal conductivities of the HTS thermal bridges
provided in Appendix E.

The mathematical description of the constant effective thermal conductivity estimated
using T{(x), is more complex. In reality, this estimate, B, represents a weighted average
of k(T) in the temperature range [T,-T). In order to define the true value for B,
B erix consider the discretization into several intervals of the distribution k(T) over the
temperature range [T,-T,] as shown in Figure 4.2.11. It is important to point out that the
limits of these intervals must coincide with the numerical temperatures obtained using
ORTHO3D in Section 3.2. This coincidence is required because in the estimation of By,
the measured temperatures are simulated by adding random errors to the temperature
solution produced using ORTHO3D. In doing this curve discretization, recall that the
geometric model of the HTS thermal bridges was discretized in a hundred control
volumes along the length which provided 102 numerical values for the temperature
distribution. Therefore the curve describing k,(T) should be divided in 101 (102-1)
intervals. The average value of k,(T) over the first interval [T,-T(2)], is denoted by Bl
as seen in Figure 4.2.11; the average value of k(T) over both the first and second
intervals, that is on the range [T,-7(3)], is denoted by B2y, eventually, B101y,, denotes
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the average value of k,(T) over the entire range investigated [7,-T]. One can notice that
B1 OIT(,)=BmTL. These different means Biy,, (i=1,101), are expressed as,

T}{)
k_(T)dT
T "7( (4.2.6)

] =
Bire) = ~ayT,

The true value, BmT(x), for the estimate of a constant effective thermal conductivity
calculated using T(x), can now be defined as the weighted average of the different means
Bir,, and described as,

101
3> i frea()
i
BWT(I) - 101 ’

Y Area(i)
i1

(4.2.7)

where Area(i) is the area under the curve k,”(T) over the temperature range [T,-7(i)]:
As described in Figure 4.2.11, the value for er(x)is expected to be less than the

value for 8 because all the means Biy,, are less (or equal for B101y,) than BmTL.

trueT, *
This behavior should be obtained for the true estimates of the constant effective thermal
conductivities of the HTS thermal bridges because the distribution k.(7) in Figure 4.2.11
generally characterizes the profiles of the effective thermal conductivities of the HTS

thermal bridges. The true estimates, BtmeT(x)’ and meTL’ were computed for each HTS

thermal bridge using the program KEFF.FOR (Appendix K).
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4.2.2.2.2 Constant Effective Thermal Conductivity Estimates

The results obtained for the estimated constant thermal conductivities of the HTS
thermal bridges are presented and discussed in this subsection. These results include the
constant thermal conductivities, By, and BTL’ estimated using temperatures along the
thermal bridges and at only the warm end of the thermal bridges, respectively. Both
thermal properties were estimated using the parameter estimation program
KBOXEFF.FOR. The calculated temperatures, T(x) and T,, are governed by a simple

one-dimensional equation resulting in,

1

T(x) = B‘I x+4 . (4.2.8)
Tg)

The measured temperatures were simulated by adding normally distributed random errors
with three different standard deviations (0.1, 0.5 and 1.0 K) to the temperature values
obtained using ORTHO3D. Recall that 102 numerical values for the temperature
distribution were computed along the thermal bridges. Therefore, in the case of
temperature measurements along the thermal bridges, 102 data points could be simulated.
Since no restriction exists for the temperature measurement number at the warm end of
the thermal bridges in this case, 500 data were simulated for each experiment. Ten
simulated experiments were performed for each standard deviation, which generated a
total of thirty experiments for each case. This was performed using the program YI.FOR.

The estimates, By, and BTL , obtained for each experiment are given in Tables 4.2.8
10 4.2.12 for the thermal bridges BSCCO/FSI, YBCO/FSI, BSCCO/YSZ, YBCO/YSZ and

YBCO/GREEN, respectively. For each standard deviation of measurement errors, the
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mean value of the estimates is provided, along with its 95-percent confidence interval.

The 95-percent confidence intervals were calculated from

- t
b x < (4.2.9)

A
where Z,. and s are the mean and standard deviation of the estimate, respectively, N, is
the number of data points used, and f,, is the value of the t distribution with (N,-1)
degrees of freedom and a/2 confidence region (Walpole and Myers, 1978). Constant
effective thermal conductivities were also estimated using the temperatures directly
obtained from ORTHO3D for the measured temperatures, resulting in the estimates By,
and Bor,_- The temperatures obtained from ORTHO3D are called "exact” data because
these temperatures are taken as reference in this research. The true estimates, Bmm} and
erL’ described in the previous subsection, are supplied for each thermal bridge.
Eventually, the percentage difference between both the mean value of each standard

deviation and the estimate obtained using exact data, and between the estimate using exact
data and the true estimate, is given.

In the analysis of Tables 4.2.8 to 4.2.12, general results can be commented for the
five HTS thermal bridges. First, as anticipated in Section 4.2.2.2.1, larger values are
obtained for the estimation of the constant effective thermal conductivities at the warm
end of the thermal bridges; that is BTL >Bryy

Second, for all experiments conducted, the estimates using exact data, B4, and BOTL ,
fall within the 95-percent confidence intervals of the respective mean values. This result
ensures that reasonable estimates have been obtained and allows for the validation of the
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Table 4.2.8. Estimated Constant Effective Thermal Conductivities for the Thermal

Bridge BSCCO/FSI.

Standard Deviation of Measurement Errors (s)

126

Simu.lated 0.1 0.5 1.0
R Bny | Bn | Pny | Bn | Bng | B
1 0.2696 | 03153 | 0.270 | 0.3154 | 0.2702 | 0.3155
2 0.2696 | 03153 | 0.2697 | 0.3152 | 0.2699 | 0.3151
3 0.2696 | 03153 | 0.2697 | 03153 | 0270 | 03154
4 0.2695 | 03153 | 0.2696 | 0.3 154 0.2697 | 0.3154
5 0.2696 | 0.3153 | 0.2697 | 0.3153 | 0.2698 | 0.3154
6 0.2695 | 0.3153 | 0.2693 | 0.3152 | 0.2690 | 0.3151
7 0.2695 | 0.3153 | 0.2694 | 0.3154 | 0.2693 | 0.3155
8 0.2696 | 0.3152 | 0.2698 | 0.3151 | 0.2700 { 0.3149
9 0.2695 | 0.3153 | 0.2696 | 0.3154 | 0.2697 | 0.3155
10 0.2695 | 0.3153 | 0.2695 | 0.3153 | 0.2695 | 03154
Mean 0.2695 | 0.3153 | 0.2696 | 0.3153 | 0.2697 | 0.3153
+2.6E-5 | £1.5E-5 | £1.3E-4 | £7.3E-5 | +£2.6E-4 | £1.5E-4
Difference (%) 0.007 0.001 0.033 0.007 0.067 0.013
mean/exact data
Exact Data (s=0) Bor(x) BOT"
0.2695 | 0.3153
Difference (%)
exact (_1ata/ 2.61 0.04
true estimate
True Estimate Pty | P,
0.2627 | 0.3152




Bridge YBCO/FSL

Table 4.2.9. Estimated Constant Effective Thermal Conductivities for the Thermal

Standard Deviation of Measurement Errors (s)

Simulated 0.1 0.5 1.0
Epenmett | Bny | Pn | Prg | Pn | Bno | Pn

1 0.4564 | 0.5214 | 0.4568 | 0.5215 | 0.4574 | 0.5217

2 0.4563 | 0.5213 | 0.4566 | 0.5213 | 0.4570 | 0.5211

3 0.4563 | 0.5214 | 0.4566 | 0.5215 | 0.4569 | 0.5216

4 0.4563 | 0.5214 | 0.4564 | 0.5215 | 0.4566 | 0.5217

5 0.4563 | 0.5214 | 0.4565 | 0.5215 | 0.4568 | 0.5216

6 0.4562 | 0.5213 | 0.4558 | 0.5212 | 0.4553 | 0.5211

7 0.4562 | 0.5214 | 0.4561 | 0.5215 | 0.4559 | 0.5217

8 0.4564 | 0.5213 | 0.4567 | 0.5211 | 0.4572 | 0.5208

9 0.4563 | 0.5214 | 0.4564 | 0.5216 | 0.4565 | 0.5218

10 0.4563 | 0.5214 | 0.4563 | 0.5215 | 0.4563 | 0.5216

Mean 0.4563 | 0.5214 | 0.4564 | 0.5214 | 0.4566 | 0.5215

+4.5E-5 | £2.4E-5 | £2.3E-4 | £1.2E-4 | +4.5E-4 | £2.4E-4
Difference (%) 0.007 0.001 0.033 0.007 0.067 0.013
mean/exact data
Exact Data (s=0) Pore BOTL
0.4563 | 0.5214
Difference (%)
exact data/ 2.26 0.11
true estimate

True Estimate Pty | Prnar,
0.4462 | 0.5277
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Table 4.2.10. Estimated Constant Effective Thermal Conductivities for the Thermal
Bridge BSCCO/YSZ.

Standard Deviation of Measurement Errors (s)

Simu.lated 0.1 0.5 1.0
Experiment Bro | Br, | Bry | Br, | Bry | Pn
1 0.7046 | 0.7602 | 0.7053 | 0.7603 | 0.7062 | 0.7605
2 0.7045 | 0.7601 | 0.7050 | 0.7599 | 0.7055 | 0.7597
3 0.7045 | 0.7601 | 0.7049 | 0.7603 | 0.7055 | 0.7604
4 0.7044 | 0.7602 | 0.7047 | 0.7603 | 0.7049 | 0.7605
5 0.7045 | 0.7601 | 0.7048 | 0.7602 | 0.7052 | 0.7604
6 0.7042 | 0.7601 | 0.7036 | 0.7598 | 0.7028 | 0.7596
7 0.7043 | 0.7602 | 0.7040 | 0.7603 | 0.7037 | 0.7606
8 0.7045 | 0.7600 | 0.7051 | 0.7597 | 0.7058 | 0.7593
9 0.7044 | 0.7602 | 0.7046 | 0.7604 | 0.7047 | 0.7607
10 0.7044 | 0.7601 | 0.7044 | 0.7603 | 0.7044 | 0.7604
Mean 0.7044 | 0.7601 | 0.7046 | 0.7602 | 0.7049 | 0.7602
+7.3E-5 | £3.5E-5 | +3.7E-4 | £1.8E-4 | £7.3E-4 | £3.5E-4
Difference (%) 0.007 0.001 0.033 0.007 0.067 0.013 I
mean/exact data
Exact Data (s=0) Porey Por,
0.7044 | 0.7601
Difference (%)
exact c-iatal 2.23 0.06
true estimate
True Estimate ﬁmm) BMTL
0.6890 | 0.7606
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Table 4.2.11. Estimated Constant Effective Thermal Conductivities for the Thermal

Bridge YBCO/YSZ.

Standard Deviation of Measurement Errors (s)
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Simulated 0.1 0.5 1.0
Experiment Bm) B T, B T(x) B T, BT(x) BTL
1 0.8919 | 0.9666 | 0.8928 | 0.9669 | 0.8940 | 0.9671
2 0.8918 | 0.9665 | 0.8924 | 0.9664 | 0.8931 | 0.9661
3 0.8918 | 09666 | 0.8923 | 0.9668 | 0.8930 | 0.9670
4 0.8917 | 0.9666 | 0.8920 | 0.9668 | 0.8923 | 0.9671
5 0.8918 | 0.9666 | 0.8922 | 0.9668 | 0.8927 | 0.9669
6 0.8914 | 0.9665 | 0.8907 | 0.9663 | 0.8897 | 0.9659
7 0.8916 | 0.9666 | 0.8912 | 0.9669 | 0.8908 | 0.9671
8 0.8918 | 0.9665 | 0.8926 | 09661 | 0.8935 | 0.9655
9 0.8917 | 09667 | 0.8919 | 0.9670 | 0.8921 | 0.9673
10 0.8916 | 0.9666 | 0.8917 | 0.9668 | 0.8917 | 0.9670
Mean 0.8917 | 09666 | 0.8920 | 0.9667 | 0.8923 | 0.9667
49 3E-5 | +4.5E-5 | $4.6E-4 | £2.2E-4 | 19.3E-4 | +4.5E-4
Difference (%) 0.007 0.001 0.033 0.007 0.067 0.013
mean/exact data
Exact Data (s=0) BOT(I) BOTL
0.8917 | 0.9666
Difference (%)
exact data/ 2.36 0.10
true estimate
True Estimate anx) BMTL
0.8710 | 0.9656




Table 4.2.12. Estimated Constant Effective Thermal Conductivities for the Thermal
Bridge YBCO/GREEN.

Standard Deviation of Measurement Errors (s)
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|
Simulated " 0.1 0.5 1.0
srpenment | By | B | Bny | Bn | Bny | B
1 45154 | 4.8459 | 4.5201 | 4.8470 | 4.5261 | 4.8484
2 45149 | 48454 | 45180 | 4.8445 | 4.5217 | 4.8433
3 45149 | 48459 | 45177 | 4.8466 | 4.5212 | 4.8475
4 45145 | 48460 | 4.5160 | 4.8470 | 4.5118 | 4.8483
5 45147 | 4.8458 | 4.5169 | 4.8465 | 4.5196 | 4.8474
6 45132 | 48453 | 45092 | 4.8440 | 4.5041 | 4.8424
7 45138 | 4.8459 | 4.5120 | 4.8470 | 4.5099 | 4.8484
8 4.5151 | 4.8451 | 4.5189 | 4.8430 | 4.5236 | 4.8403
9 45144 | 48461 | 4.5153 | 4.8476 | 4.5165 | 4.8496
10 4.5142 | 4.8459 | 4.5142 | 4.8466 | 4.5143 | 4.8476
I Mean 4.5145 | 4.8457 | 4.5158 | 4.8460 | 4.5175 | 4.8463
14 8E-4 | +2.2E-4 | £2.4E-3 | £1.1E-3 | 14.7E-3 | £2.2E-3
Difference (%) 0.007 0.001 0.033 0.007 0.067 0.013
mean/exact data
Exact Daa s=0) | 7@ | Pon
4.5142 | 4.8457
Difference (%)
exact (.iata/ 2.41 0.03
true estimate
True Estimate ﬂmm) BMT"
4.4080 | 4.8470




estimation procedure.

Larger percentage differences with respect to the estimates from exact data are
obtained for the mean values of the estimates By, which indicates that the thermal
parameter B,, is more difficult to estimate than the thermal parameter BTL' This occurs
because, based on the sensitivity analysis, the most temperature information for the
parameter estimation is provided at the warm end of the thermal bridges. Indeed, recall
that the sensitivity coefficient magnitudes have been shown in Sections 4.2.1 and 4.2.2.1
to be maximum at the warm end of the thermal bridges; furthermore, note that parameters
estimated from data with large sensitivity coefficients are generally more accurate than
parameters estimated from data with small sensitivity coefficients (Scott, 1994).
Therefore, the estimation of By, is more sensitive to experimental errors. This result is
of importance in this research as it confirms the placement of a temperature sensor at the
warm end of the thermal bridges in the preliminary experimental design.

As shown in Tables 4.2.8 to 4.2.12, the addition of random measurement errors with
standard deviation of 0.1, 0.5 and 1.0 K, induces an overall decrease in the accuracy of
the estimates, with an associated increase in the corresponding 95-percent confidence
intervals. The maximum percentage difference with respect to exact data is contained in
the mean values of the estimates obtained using measurement errors with a standard
deviation of 1.0 K; this results for the five HTS thermal bridges in percentage differences
of 0.013 percent for the estimates BTL and in percentage differences ranging from 0.067
to 0.073 percent for the estimates By, The small values for these percentage differences

confirm that reasonable estimates have been obtained.
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A comment should be added about the influence of the initial estimate in the
parameter estimation method, as it bears on the performances of the procedure. Indeed,
when the initial estimate was chosen as the estimate using exact data, convergence was
reached in no more than two iterations; whereas the choice of a poor initial estimate
resulted in the increase of the number of iterations to reach convergence.

Looking now at the percentage differences between the estimates using exact data
and the true estimates, one can see that the estimates BOTL closely match the true estimates
erb with a maximum percentage difference of 0.11 percent occurring for the thermal
bridge YBCO/FSI. This result points out the reliability of the estimates obtained at the
warm end of the thermal bridges. The percentage differences between Boy,, and B,z
are however larger, with a maximum difference of 2.61 percent occurring for the thermal
bridge BSCCO/FSL. Percentage differences between By, and B,,.n. were actually
expected to be higher than those obtained between ﬁorL and BmTL. In an attempt to
explain these higher percentage differences, recall that in the computation of the value
Biruerysy in Section 4.2.2.2.1, the discretization of the distribution k(T) was restricted to
101 intervals. This restriction was required so that the limits of the intervals coincide
with the numerical temperature values produced using ORTHO3D. From this, one can
expect that the use of more data points along the thermal bridges should help obtaining
closer values for Byp,, and B,..n,)

Finally, the values of the constant effective thermal conductivities estimated for each
thermal bridge were compared. This comparison shows that the smallest values for By,
and BTL are logically obtained for the thermal bridge BSCCO/FSI which displays the less
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heat load on the cryogen, or in other words, which conducts heat the less. In addition,
the proportionality between the constant effective thermal conductivities BOTL , estimated
using exact data, is found to correspond to the proportionality between the heat loads on

the cryogen, Q... provided in Table 3.2.1, by the HTS thermal bridges. Using the

BOle

thermal bridge BSCCO/FSI (BF) as a reference, Table 4.2.13 displays the ratios
0T, BF

and —Qﬂ, where j denotes the four other HTS thermal bridges. As one can see, for
each th:rn;fafl bridge, the same value is obtained for both ratios. This result was expected
because BOTL represents the estimate using exact data of the average value over the
temperature range [T,-T,] of the HTS thermal bridge effective thermal conductivity. The
excellent agreement between both ratios not only demonstrates the accuracy of the
estimation of the average values over the temperature range [T;-7,] of the HTS thermal

bridge effective thermal conductivities, but also shows that this estimation is an effective

way to demonstrate the respective heat loads on the cryogen.

Table 4.2.13. Proportionality Between Both the Constant Effective Thermal Conductivities
Estimated at the Warm End of the HTS Thermal Bridges Using Exact Data
and the Respective Heat Loads on the Cryogen.

BSCCO/ | YBCO/ | BSCCO/ | YBCO/ YBCO/

FSI FSI YSZ YSZ GREEN

Bor, Wim-K) | 03153 0.5214 | 0.7601 0.9666 4.8457

0...s W) 244E-4 | 4.03E-4 | S89E-4 | 7.48E4 | 3.74E-3
Bor,Bor,sr 1 1.65 241 3.07 15.37
0... /O nisF 1 1.65 2.41 3.07 15.33
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CHAPTER 5§

Conclusions and Summary

The focus of this study was on the analysis of a space experimental design for high-
T, superconductive thermal bridges (Lee, 1994). The primary objectives were to verify
that the sources of heat transfer (electrical and radiative heat sources) neglected in the
preliminary conductive analysis of the thermal bridges by Lee were indeed negligible, and
to develop a methodology for the estimation as temperature dependent of the thermal
conductivities of the HTS thermal bridges. The following conclusions were drawn based

on the results obtained.

5.1 Electrical and Radiative Heat Sources

In this investigation, the electrical and radiative heat sources on the thermal bridges
were evaluated in order to determine whether or not these sources contribute significantly
on the heat load on the cryogen. The evaluation of the radiative heat source was

performed only for the HTS thermal bridges; therefore, the cryogenic heat load generated
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by the manganin thermal bridge is a conservative result. The electrical heat source
created in the manganin wires by the electronic signals from the IR detectors was directly
implemented into the conductive model of the manganin thermal bridge. The radiative
heat source on the HTS thermal bridges was determined by performing a separate radiant
interchange analysis within a high-T, superconductor housing chamber in the experimental

design.

5.1.1 Conclusions for the Electrical Heat Source
The finite difference program ORTHO3D used to construct the conductive
mathematical models of the thermal bridges allowed for the analysis of a volumetric heat
source generated in the geometric domain. The Joule heating term created by the
electrical current was therefore incorporated as a volumetric heat source into the
manganin conductive model. The following conclusions can be drawn from the results:
1) The electrical heat source in the manganin wires does not contribute significantly on
the cryogenic heat load.
2) The temperature distribution along the manganin wires is not affected by the

electrical heat source.

5.1.2 Conclusions for the Radiative Heat Source
The analysis of the radiant interchange within a HTS housing chamber was
performed in two phases. First the distribution factors were computed using the Monte-

Carlo method and then the distribution factor results were used in calculating the radiative
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heat load on the HTS thermal bridges. Due to the geometric complexity, the HTS

thermal bridges were approximated as only the substrate materials. Because the radiative

properties of the specific substrates used in this research (fused silica, yttrium stabilized

zirconia and green phase) could not be found in the literature, these properties had to be

predicted. This prediction could be, however, responsible for variations between the

actual and the calculated radiative heat load on the HTS thermal bridges. Three different

radiative heat loads, based on geometric considerations, were compared to the conductive

heat load on the cryogen. From the results obtained, the following conclusions can be

made:

1) The solution for the distribution factors is converged and symmetric.

2) The larger the reflectivity of the substrate material, the lower the distribution factors
to the substrate and the lower the radiative heat load on the substrate.

3) The lower the reflectivity of the housing chamber material, the lower the distribution
factors to the substrate and the lower the radiative heat load on the substrate.

4) The radiative heat load on the bottom of the substrate from the entire enclosure is
negligible for the GREEN substrate but not for the FSI and YSZ substrates.

5) The radiative heat load on the bottom end of the substrate from the top end
represents less than 4 percent of the conductive heat load on the cryogen for the
three substrates (FSI, YSZ and GREEN).

6) The radiative heat load on the entire substrate from the entire enclosure is negligible
for all three substrates studied.

7) The radiative heat load on surface 4 from surface 5 represents less than 2 percent of
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the conductive heat load on the cryogen for the three substrates.
Considering that conclusions 6 and 7 provide the best information for the relevance of
radiation on the cryogenic heat load, the radiative heat source on the HTS thermal bridges
can then be reasonably neglected in the conductive analysis.

The following conclusion can also be made when examining the combined results
of the evaluation of the electrical and radiative heat sources:
1) The conductive heat loads on the cryogen and the temperature distributions along the

thermal bridges obtained in the conductive analysis (Scott and Lee, 1994) are valid.

5.2 Thermal Conductivity Estimation Methodology

A methodology was presented for the estimation of the thermal conductivities of the
individual HTS thermal bridge materials and the effective thermal conductivities of the
composite HTS thermal bridges, as functions of temperature. This methodology included
a sensitivity analysis and the demonstration of the estimation procedure using simulated
data with added random errors. The estimation procedure used was the modified Box-
Kanemasu method. The following conclusions can be drawn from the results obtained:
1) The parameters describing the material thermal conductivities as functions of

temperature in a HTS thermal bridge are correlated and cannot be estimated

simultaneously.
2) The parameters describing the HTS thermal bridge effective thermal conductivities

as functions of temperature are correlated and cannot be estimated simultaneously.
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3)

The placement of a temperature sensor at the warm end of the thermal bridges

provides the most information for the parameter estimation.

Based on the two first conclusions, the effective thermal conductivities of the HTS

thermal bridges were analyzed to be estimated as constants. The estimation procedure

was demonstrated using simulated and exact data both along the thermal bridges and at

the warm end of the thermal bridges to account for the location of the temperature sensor

in the experimental design. The results obtained allow for the following conclusions:

1)

2)

3)

4)

The estimation procedure using simulated data resulted in good agreement between
the estimated and predicted constant effective thermal conductivities.

The estimation of the constant effective thermal conductivities is more sensitive to
measurement errors using simulated data along the thermal bridges than at the warm
end of the thermal bridges.

The estimates for the constant effective thermal conductivities obtained using exact
data at the warm end represent with accuracy the average values over the
temperature range along the thermal bridges of the temperature dependent effective
thermal conductivities.

The proportionality between the estimates for the constant effective thermal
conductivities obtained using exact data at the warm end exactly corresponds to the
proportionality between the heat loads on the cryogen by the respective HTS thermal
bridges. The estimation at the warm end of the thermal bridges of the HTS thermal
bridge effective thermal conductivities as constants is then an effective way to

demonstrate the respective cryogenic heat loads.
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CHAPTER 6

Recommendations

From the analysis of the conclusions drawn in chapter five, recommendations can be
deduced for the two majors areas of this research study, namely the heat transfer analysis
of the experimental design and the thermal conductivity estimation of the HTS thermal
bridges.

In order to minimize the radiative heat source in the HTS housing area the use, for
only surfaces 1, 2 and 3 of the housing chamber (see Figure 3.3.2), of a material with
lower reflectivity than the reflectivity of the currently used pure copper is suggested. This
would allow to minimize the radiative heat load on the HTS thermal bridges and to
maintain the radiative heat load on surface 4 from surface 5 negligible. The choice for
this material would also have to meet the specific requirements set for the housing
chamber with respect to the experimental design.

To account for the radiative properties of the superconductors, the HTS leads should
be incorporated on the substrate materials in the radiation analysis.

Finally, with the primary goal to compare the performance between the HTS and the

139



manganin thermal bridges, a radiation analysis needs to be performed on the manganin
thermal bridge.

The heat transfer through the HTS thermal bridges does not account for any heat
contribution from the mechanical supports as these are currently being designed to have
no contact with the bridges in space. However, if the structural analysis of the support
mechanisms results in an effective contact in space between the supports and the bridges,
then the heat transfer model of the HTS thermal bridges would have to be reconsidered.

The estimates for the constant effective thermal conductivities of the HTS thermal
bridges obtained using exact data at the warm end represented with accuracy the average
values over the temperature range along the thermal bridges of the temperature dependent
effective thermal conductivities. The investigation of different temperatures, lower than
80 K, at the warm end (with the cold end kept fixed at 4 K) would provide an efficient
way to determine different average values of the temperature dependent effective thermal
conductivities for different temperature gradients between the ends of the thermal bridges.
The objective would be to build a model describing the average values of the effective
thermal conductivities as functions of the temperature gradient between the ends of the
thermal bridges. Note that these average values would be expected to be more accurate
as the temperature would get closer to 80 K and hence provide more information for the
parameter estimation. An interpolation procedure would need to be implemented to
obtain the distribution of the effective thermal conductivities with respect to the
temperature along the thermal bridges (ranging from 4 to 80 K) from the distribution of

the average values with respect to the temperature gradient between the ends of the
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thermal bridges (ranging from O to 76 K). Such experiment to vary the temperature at
the warm end from 4 to 80 K could be performed by programming the heater (see Section
3.1) with a step function, and estimating the thermal conductivities at steady-state

conditions throughout the interval from 4 to 80 K.
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Appendix A

The Fortran Subroutine HTS.FOR

This subroutine, HTS.FOR, was written as the adapt part of the program ORTHO3D
(provided at the end of the subroutine). HTS.FOR is used to determine the temperature

distribution and the cryogenic heat load for the five HTS thermal bridges.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
SUBROUTINE ADAPT

c

¢ HP £77 version, 3-D dp Iso version - DIN

c

cS$noextensions

C

C----- STEADY CONDUCTION IN A 3D HALF HTS THERMAL BRIDGE -----
C with isotropic gamma

C

C----- Temperature Determination
C Subroutine HTS.FOR, written by Sandrine Garcia, 1994.
C

INCLUDE ‘common3d.f
C‘#i**it**l**“*i#tt*‘*“*#“tt“tttit*t#t‘t‘tt#l“‘.t#“tti‘t*t“t.ttt‘

DIMENSION T(NINJ,NK)

EQUIVALENCE (F(1,1,1,1),T(1,1.1))

Cr S S 0 5 € 5 % & & 5 5 5 & 5 € 5 6 5 8 6 8 5 & 5 5 & % & & & 5 _ % & 8 %

HEADER="HALF YBCO/YSZ - L=152.4mm - Q'
PRINTF=T
C PLOTF ='output.pl’ (not set up for 3D plots yet)
C
¢ set geometric dimensions
rl. = 0.1524d0
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¢ if there is a buffer layer (the substrate is FSI)
cce thk2=0.0000003d0
c if there is no buffer layer
thk2 = 0.0d0
rlsuperc = 0.003048d0
el = 0.0001524d0
€2 = 0.0000508d0
a = 0.003048d0
C
¢ zoned grid method
c set x,y and z zones
NZX =1
XZONE(1) =1L
NCVX(1) = 100

NZY =2
YZONE(]l) = a
NCVY(1) =4
YZONE(2) = rlsuperc/2.d0
NCVY(2)=3
C
NZZ =2
¢ if the substrate is FSI, add 1 CV for the buffer layer
cce NZZ =3
ZZ0NE(1) =el
NCVZ(1)=3
¢ if there is no buffer layer
ZZONE(2) = e2
NCVZ(2)=2
¢ if there is a buffer layer
cce ZZONE(2) = thk2
cce NCVZ(2)=1
cce ZZONE(3) = e2
ccc NCVZ(3)=2
C

CALL ZGRID
RETURN

Cl‘_t_t ‘_#_i_#_t_#,*_t_i_l_t_*_*_#_i_l!_t_t_*_t_#_l_t_t<‘_‘_t_i_‘_t_t_l_‘

ENTRY BEGIN
(o)
TITLE(1) = TEMPERATURE '
KSOLVE(1)=1
KPRINT(1)=0
KPLOT(1) =0
KSTOP =0

¢ set maximum number of outer iterations
LAST =50

¢ set minimum number of outer iterations
ITRMIN = 8

¢ set convergence parameter
epsi = 1.d-5

¢ set initial temperature (K)
DO 100 K=1,N1
DO 100 J=1.M1
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T(1J.K) = 4.d0
DO 100 1=2,L1
T(1JK) = 4.7336407d0 + 2376.7446289d0*X(T)
- 85404.94531d0*X(I)**2
+ 2106631.25d0*X(I)**3
- 29870884.d0*X(1)**4
+ 238106752.d0*X(I)**5
- 991233280.d0*X(I)**6
+ 1674745088.d0*X(T)**7
100 CONTINUE
C
c set thermal conductivity coefficients
Bgl = 0.3558d0
Bg2 = 0.07173d0
Bg3 = 0.01066d0
Bg4 = -3.7064-4
BgS = 4.8144d-6
Bg6 = -2.839d-8
Bg7 = 6.37d-11

+ 4+ + + + +

Byl = 0.446440
By2 = -0.002426d0
By3 = 9.229d4
By4 = -2.7193d-5
ByS = 3.772d-7
By6 = -2.395d-9
By7 = 5.839d-12

Bfl = 0.01565d0
Bf2 = 0.002761d0
Bf3 = 1.561d4
Bf4.= -3.076d-6
Bf5 = 3.403d-8
Bf6 = -2.009d-10
Bf7 = 4.8264-13

Bzl = -0.2045d0
Bz2 = 0.1159d0
Bz3 = -0.001041d0
Bz4 = -2.761d-5
BzS = 6.671d-7
Bz6 = -5.127d-9
Bz7 = 1.367d-11

Bybcol = 0.1567d0
Bybco2 = 0.01403d0
Bybco3 = 0.007463d0
Bybcod = -2.51d4
BybcoS = 3.437d-6
Bybco6 = -2.201d-8
Bybco7 = 5.45d-11

Bbsccol = 0.143d0
Bbscco2 = 0.05445d0
Bbscco3 = -0.003517d0
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Bbsccod = 1.243d-4
BbsccoS = -2.1d-6
Bbscco6 = 1.665d-8
Bbscco7 = -5.035d-11

set input heat flux (W/m2)

- if the thermal bridge is YBCO/GREEN
Qyg = 2415.429d0

- if the thermal bridge is YBCO/YSZ
Qyy = 483.237d0

¢ - if the thermal bridge is BSCCO/YSZ

Qby = 380.095d0

¢ - if the thermal bridge is YBCO/FSI
Qyf = 260.383d0

- if the thermal bridge is BSCCO/FSI
Qbf = 157.302d0

60N

[¢]

[¢]

QOUTO = 0.D0
RETURN
Ct_t_#_t_l_*_t_#_l_‘_#_#_*_#_*_l_t_*_#_t_‘_'_t_‘_*-*_t_t_‘_#_#_#_t_t_‘_l
ENTRY OUTPUT
c
QIN =0.D0
QOUT = 0.D0
DO 20 J=2,M2
DO 20 K=2,N2
QIN = QIN + YCV(J)*ZCV(K)*FLUXL1(J,K,1)
QOUT = QOUT + YCV(J)*ZCV(K)*FLUXI1(J.K.1)
20 CONTINUE

DO 200 IUNIT=IU1,1U2
IFATER .EQ.0) WRITE(IUNIT,210)
210 FORMAT(2X,TTER'3X, T(L1,M2,11),5X, T(L1,M2,12)y 9X,QIN',
+ 13X,'QOUT 9X,'NTC(1)")
WRITE(IUNIT,220ITER, T(L1,M2,11), T(L1,M2,12),QIN,QOUT,NTC(1)
220 FORMAT(2X.I3,3X,1PE10.2,5X,1PE10.2,7X,1PE10.3,7X,1PE10.3,
+ 7X.12)
200 CONTINUE
C
c create a convergence criterion
IF (ITER.LTITRMIN) RETURN
DIFF = ABS((QOUT-QOUTO¥(QOUT+SMALL))
QOUTO=QOUT
IF (DIFF.LE.epsi.OR.ITER.EQ.LAST) THEN
C
¢ calculate overall energy balance
HTBAL = QIN + QOUT
EBAL = ABS(HTBAL/QIN)
DO 40 TUNIT=IU1,IU2
WRITE(IUNIT,50)EBAL
50 FORMAT(/,2X,'EBAL',1PE11.3)
40 CONTINUE
C
¢ Record temperature solution on specific file
open(unit=3file="yy.100)
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do i=1,L1
write(3,'(E18.5))T(i,M2,11)

enddo

close(3)

CALL PRINT
close (iu2)
KSTOP=1
ENDIF

RETURN
U EERE AR AR N A R RN

c set conductivities
DO 300 K=2,N2
DO 300 J=2 M2
DO 300 1=2,L.2
C
IF (Z(K).LE.el) THEN
¢ if the substrate is the GREEN PHASE :

cee GAM(,J K) = Bgl + Bg2*T(1,J K)
cce + + Bg3*T(1,J,K)**2
cce + + Bg4*T(LJ K)**3
cce + + Bg5S*T(LJ,K)**4
cce + + Bg6*T(1,J,K)**5
ccc 4+ + Bg7*T(LJK)**6

c if the substrate is YSZ :
GAM(,JK) = Byl + By2*T(1J.K)

+ + By3*T(1J,K)**2
+ + By4*T(LJ,K)**3
+ + By5*T(1.J.K)**4
+ + By6*T(LJK)**S
+ + By7T*T(LJ,K)**6

c if the substrate is FSI :

cce GAM(,J.K) = Bfl + Bf2*T(LJ,.K)
cec + + Bfa*T(1,1, K)**2
ccc + + Bf4*T(1,JK)**3
cec 4+ + BfS*T(1,J,K)**4
ccc + + Bf6*T(LJLK)**5
cce + + Bf7*T(1, 1 K)**6
ELSE
C
IF (Z(K).GT.e1.AND.Y(J).LT.a) GAM(,J,K) = 0.d0
C
¢ if there is a buffer layer (the substrate is FSI)
cce IF (Z(K).GT.e1.AND.Z(K).LE.(e1+thk2).AND.
ccc + Y(J).GE.a) THEN
cce GAM(,J.K) = Bzl + Bz2*T(1.J,K)
cce + + Bz3*T(1J,K)**2
cce + + Bz4*T(1,],K)**3
cce + + Bz5*T(1,],K)**4
ccc + + Bz6*T(L,J,K)**S
cce + + Bz7*T(1,J, K)**6
cce ENDIF
C
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IF (Z(K).GT.(e1+thk2). AND.Z(K).LE.(e1 +thk2+¢2). AND.
+ Y(J).GE.a) THEN
¢ if the superconductor is YBCO :
GAM(,J.K) = Bybeol + Bybco2*T(LJ.K)

+ + Bybco3*T(I,J,K)**2
+ + Bybco4*T(1,J,K)**3
+ + BybcoS*T(1,J,K)**4
+ + Bybco6*T(1,J,K)**5
+ + Bybco7*T(1,J,K)**6
¢ if the superconductor is BSCCO :
cce GAM(,J K) = Bbsccol + Bbscco2*T(L],K)
cce 4+ + Bbscco3*T(LJ,K)**2
ccc + + Bbsccod4*T(1,J, K)**3
cce + + Bbscco5*T(1,J,K)**4
cec + + Bbscco6*T(LJ K)**5
cce  + + Bbscco7*T(1.J.K)**6
ENDIF
C
ENDIF
300 CONTINUE
C
¢ set boundary conditions
DO 310 K=2,N2
DO 310 J=2,M2
KBCL1(J,K) =2
c - for the substrate
IF (Z(K).LE.e1) THEN
FLXCL1(J.K) = Qyy
ELSE
C
c - if there is a buffer layer
cce IF (Y(J).GE.a.AND.Z(K).GT.e1. AND.Z(K).LE.
cce + (el+thk2)) THEN
cce FLXCL1(J,K) = Qyf
cce ENDIF
c - for the superconductor
IF (Y(J).GE.a.AND.Z(K).GT.(el +thk2). AND.Z(K).LE.
+ (e1+thk2+e2)) THEN
FLXCL1(J,K) = Qyy
C
ENDIF
ENDIF
310 CONTINUE
C
DO 320 K=2,N2
DO 3201=2,L2
KBCJ1(1.K)=2
KBCM1(1,K)=2
320 CONTINUE
C
DO 330 J=2.M2
DO 3301=2,1.2
KBCKI1(L,))=2
KBCNI(L))=2
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330 CONTINUE
C

RETURN

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

EEREPERARRRERBRERRKRRREEEXEI RS RN SRR BRI ARk R Rk kR RS AR R kR Rk

PROGRAM ORTHO3D
*
* Control Volume Method solution of three-dimensional, isotropic
* heat conduction
*
* User portion of code contained in layer*.f
* layer3d.f - standard user subroutine

* RS/6000 version - double precision

*

* Program structure similar to that detailed in

* "Computation of Conduction and Duct Flow Heat Transfer",

* 8.V. Patankar, Maple Grove, MN: Innovative Research, Inc.
x

ERAkRkkRkRkok ks kR Rk kR kR Rk ok ko b ok ko ks ok oKk ok ok ok

INCLUDE 'common3d.f

C
CALL DEFLT
CALL GRID
CALL READY
CALL BEGIN
C
10 CONTINUE
C
c start iteration of outer loop
CALL OUTPUT

¢ check to see if convergence has occured
IF(KSTOP.NE.O) STOP 'HTSISOX.F done’
CALL HEART
GO TO 10

STOP

END
ERRERRRRERREEAREREE R SRR RRRRRARRRERRRBRRERERRR DR R R AR N R RR R kSRR B AR K SRERK
¢ include other subroutines in invariant part

INCLUDE 'defrd3d.f

INCLUDE ‘heart3d.f

INCLUDE ‘solve3d.f

INCLUDE 'tools3d.f
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Appendix B

The Fortran Subroutine MANG.FOR

This subroutine, MANG.FOR, was written as the adapt part of the program
ORTHO3D (provided at the end of the subroutine HTS.FOR in appendix A).
MANG.FOR is used to determine the temperature distribution and the cryogenic heat load

for the manganin thermal bridge.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCl
SUBROUTINE ADAPT

c

¢ HP 77 version, 3-D dp Ortho version - DIN

c

c$noextensions

C

C----- STEADY CONDUCTION IN A 3D FOURTH MANGANIN THERMAL BRIDGE -----
c with isotropic gamma

C

C----- Temperature Determination
C Subroutine MANG.FOR, written by Sandrine Garcia, 1994.
C

INCLUDE ‘common3d.f

C*tt##ttt#t‘tt*t‘tt‘#*ttt*tllt**#‘#t#i#*t*tti**t*‘*t*#‘t#*“‘*i***‘**ti#

DIMENSION T(NLNIJ,NK)
EQUIVALENCE (F(1,1,1,1).T(1,1,1))

Ct_*#tt*#tti*t‘tttlttt*##‘#t‘#*ttt#tit

HEADER=' FOURTH MANGANIN - L=101.6mm - Q+g'
PRINTF='mgg2.pr
C PLOTF ='output.p!' (not set up for 3D plots yet)
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C
c set geometric dimensions
rL = 0.1524d0
rimang = 0.0005491747d0
rlkapt = 0.000001743629840
c
¢ zoned grid method
c set x, y and z zones
NZX =1
XZONE(1) =1L
NCVX(1) = 100

NZY =2
YZONE(1) = rlkapt
NCVY(1) = 1

YZONE(2) = rimang/2.d0
NCVY(2) = 4

NZZ =2

ZZONE(1) = rlkapt
NCVZ(1) =1

ZZONE(2) = rlmang/2.d0
NCVZ(2)=4

CALL ZGRID
RETURN
C*_t_*_#_i_‘_*_*_#_t-t_t_t_t_t_t_*_‘_‘_i_l_*_#_t_t_t_t_*_t_l_t_t_t_t_l_#
ENTRY BEGIN
C
TITLE(1) = TEMPERATURE"
KSOLVE(1)=1
KPRINT(1)=1
KPLOT(1) =0
C
set maximum number of outer iterations
LAST =100
¢ set minimum number of outer iterations
ITRMIN =30
set convergence parameter
epsi = 1.d-5

[¢]

[£]

on

set initial temperature (K)
DO 100 K=1,N1
DO 100 J=1 M1
T(1,JK) =4
DO 100 I=2,L1
T(LJ,K) = 4.7336407d0 + 2376.7446289d0*X(I)
- 85404.94531d0*X(I)**2
+ 2106631.25d0*X(1)**3
- 29870884.d0*X(1)**4
+ 238106752.d0*X(I)**5
- 991233280.d0*X(1)**6
+ 1674745088.d0* X(1)**7
100 CONTINUE
C

+ 4+ + + + 4+
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¢ set input heat flux calculated by Lee (W/m2)
Q =13321.5d0
c set electrical source (W/m3)
g = 5.294-6
¢ define constant conductivity of kapton (W/m*K)
CDKAP = 0.16d0
C
QOUTO = 0.D0
RETURN

C*_**t*i**ti*ittit*#**‘#t*l**it*t*t#tt

ENTRY OUTPUT
C
QIN =0.D0
QOUT = 0.D0
DO 20 J=2,M2
DO 20 K=2,N2
QIN = QIN + YCV()*ZCV(K)*FLUXL1(J.K,1)
QOUT = QOUT + YCV())*ZCV(K)*FLUXI1(J.K.1)
20 CONTINUE
C
DO 200 TUNIT=IU1,JU2
IFAITER.EQ.0) WRITE(IUNIT,210) .
210 FORMAT(2X,TTER',3X, T(L1,M2,N2)'5x, T(L1,M2,2),
+ 8X,'QIN',13X,'QOUT ,9X,'NTC(1))
WRITE(IUNIT,220)ITER, T(L1,M2,N2),T(L1,M2,2),QIN,QOUT,NTC(1)
220 FORMAT(2X.I3,3X,1PE10.2,5x,1PE10.2,5X,1PE10.3,7X,1PE10.3,
+ 7X.12)
200 CONTINUE
C
c create a convergence criterion
IF (ITER.LTITRMIN) RETURN
DIFF = ABS((QOUT-QOUTO¥(QOUT+SMALL))
QOUTO=QOUT
IF (DIFF.LE.epsi.ORITER.EQ.LAST) THEN
C
¢ calculate overall energy balance
HTBAL = QIN + QOUT
EBAL = ABS(HTBAL/QIN)
DO 40 IUNIT=IU1,JU2
WRITE(IUNIT,50)EBAL
FORMAT(/.2X,’EBAL',1PE11.3)
CONTINUE

083

CALL PRINT
close (iu2)
KSTOP=1
ENDIF
RETURN

C#_t_t_t_ll,t_‘_li_‘_t_‘-t_‘_t_t_‘_t_‘-t_t_t-*-l_#_‘_‘_t_t_‘,‘_'_t_t_i_t_‘

ENTRY PHI

C

¢ set conductivities and electrical source
DO 300 K=2,N2
DO 300 J=2,M2
DO 300 1=2,L2
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IF (Y(J).LT.rikkapt. OR.Z(K).LT rlkapt)
+ GAM(1,J,K) = CDKAP

C
IF (Y()).GE.rikapt. AND Z(K).GE.rlkapt) THEN
GAM(.J.K) = 0.01449D0 + 0.1005D0*T(1,J,K)
+ + 0.005584D0*T(1,1,K)**2
+ - 1.911D4*T(LJ,K)**3
+ + 3.283D-6*T(1,), K)**4
+ - 2.88D-8*T(1,J, K)**S
+ + 9.859D-11*T(1,J,K)**6
C
¢ set volumetric heat source
SCLIK) = g
ENDIF
300 CONTINUE
C
¢ set boundary conditions
DO 310 K=2,N2
DO 310 J1=2M2
KBCLI(JK) =2
c - for the manganin

IF (Y(J).GE.rlkkapt. AND.Z(K).GE rlkapt)
+ FLXCL1(JK)=Q
310 CONTINUE
C
DO 320 K=2,N2
DO 3201=2,12
KBCJ1(1,K)=2
KBCM1(1.K)=2
320 CONTINUE
C
DO 330 J=2,M2
DO 330 1=2,L2
KBCKI1(1,J)=2
KBCNI(LJ)=2
330 CONTINUE
C
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceccecceccececcecceececceeccceee
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceccceeececcecee

156



Appendix C

The Fortran Program MC.FOR

This program, MC.FOR, performs a Monte-Carlo analysis of the HTS thermal bridges
designed by Kasey M. Lee. The distribution factors D;; are computed in order to then
determine the radiative heat transfer in the enclosure and more specifically on the
substrate material. Therefore MC.FOR has the ability to increase the number of rings in

the substrate material. This program was developed by Sandrine Garcia, 1994.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeceeeccee
Program MCHTS

Name of the main variables used in this code

integer

* nelemt : number of surfaces in the enclosure

* nrings : number of rings in the substrate material

* nbundles : number of energy bundles emitted by each surface

* countelt : counter of energy bundles emitted by each surface

* il : emitting surface

* i2 : bundle number

* i : source surface

* j : surface striked by an energy bundle

* k(nelemt) : determines the z coordinate of each rings in the substrate
material

* seed : implemented to the random number generator urand()

real
* countDij(nelemt,nelemt) : number of energy bundle emitted by surface i
and absorbed by surface j

aooonoaono00onono0oonnOn0nn
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* Dij(nelemt,nelemt) : distribution factor

* Dtot : summation of all Dij; should be equal to 1

* alpha : angle between surfaces 1 and 2 in the single housing chamber;

since it is a third of a cylinder, alpha=2*pi/3

* H : Height of the thermal bridge

* R : radius of the single housing chamber

* ] : width of the substrate material

* ¢ : thickness of the substrate material

* (xa,ya) : coordinates of point A in the plane (x-y)

* (xb,yb) : coordinates of point B "

* (xc,yc) : coordinates of point C "

* (xd,yd) : coordinates of point D

* (xe,ye) : coordinates of point E

* (x1,y1,z1) : coordinates of the point of emission

* (x2,y2,22) : coordinates of the point of intersection between the energy
bundle emitted from point 1 on surface i and surface j

* (11,m1,nl) : direction cosines of the energy bundle unit vector emitted
from surface i

* (12,m2,n2) : direction cosines of the energy bundle unit vector reflected
on surface j

* emiss(nelemt) : emissivity of each surface

* absorpt(nelemt) : absorptivity of each surface

* ratio(nelemt) : reflectivity ratio of each surface

integer nelemt,nrings,nbundles,countelt(69),max,

+ 1,i1,i2,,k(69),seed1,seed2

double precision Dij(69,69),Dtot(69),countDij(69,69),
+  pialpha,H,R l,e.xa,ya,xb,yb,xc,yc,xd,yd,xe,ye,

+ 11,m1,nl,12,m2,n2,x1,y1,21,x2,y2,22,Lmin,

+ A(69),emiss(69),absorpt(69),ratio(69),urand

COMMON/RANDOM/seed1,seed2
COMMON/GEOM I/nrings,alpha,H,R,pi
COMMON/GEOM2/1,e
COMMON/POINTABC/xa,ya,xb,yb,xc,yc
COMMON/POINTDE/xd,yd,xe,ye
COMMON/PROPI1/A emiss,nelemt
COMMON/PROP2/absorpt.ratio,nbundles
COMMON/COUNTER/countDij,Dij,Dtot,countelt
COMMON/SUBSTRATEX
COMMON/POINT1/x1,yl1,z1
COMMON/POINT2/x2,y2,22
COMMON/DIRECTION1/11,m1,nl
COMMON/DIRECTION2/12,m2,n2

set constants
call const

open(10,file="100m16n.out’)
open(20.file="100m16n.dat’)

output title :

write(*,*)MCproject running ...’
write(10,*)'output : 100mi6n.out’
write(10,*)'emiss 1 (housing }=0.020'
write(10,*)'absorpt 1 (housing }=0.020'
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write{10,*)'ratio1 (housing)=0.95'
write(10,*)Yemiss2(substrate)=0.80'
write(10,*)'absorpt2(substrate)=0.80'
write(10,*)'ratio2(substrate)=0.15'
write(10,*)'nrings = 16'
write(10,*)'nbundles = 100000’
write(10,*)'seed1 = 12056’
write(10,*)'seed2 = 08013

CC DO-LOOP TO STUDY EMISSION FROM EACH SURFACE

in the single housing chamber :
* surfaces 1 and 2 are the flat vertical surfaces
* surface 3 is the cylindrical wall
* surfaces 4 and 5 are the bottom and the top surfaces
in the substrate material :
* surfaces 6 to 6+nrings-1 are the front surfaces
* surfaces 6+nrings to 6+2*nrings-1 are the back surfaces
* surfaces 6+2*nrings to 6+3*nrings-1 are the left surfaces
* surfaces 6+3*nrings to 6+4*nrings-1 are the right surfaces

DO 999 il=1,nelemt
to follow the progress of the program on the screen
write(*,*)'il=",il
max=nbundles
initialize countelt(i) and countDij(i,j)
countelt(il)=0
do j=1,nelemt
countDij(il,j=0.
enddo

do-loop on the number of energy bundies
do 1 i2=1,max
countelt(il)=countelt(il)+1

step 1 : locate point of emission on surface i
i=il
call ptofem(i)

step 2 : find the direction of emission
call fdirofem(i)
if (dabs(n1).1t.1d-10) go to 2

step 3 : find where the emitted energy bundle strikes the enclosure wall
and identify which surface j the energy bundle striked
call finterse(il,i2.i,j,Lmin)
if (Lmin.eq.10d10) then
countelt(il)=countelt(il )-1
max=max+1
gotol
endif

step 4 : is the energy bundle absorbed or reflected on surface j ?
if (absorpt(j).ge.urand()) then

the energy bundle is absorbed

countDij(il j =countDij(il,j)+1
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gotol

else

the energy bundle is reflected
goto$

endif

9]

step 5 : is the reflection diffuse or specular ?
if (ratio(j).lt.urand()) then
the reflection is diffuse
consider emission from the point (x2,y2,22) on surface j
x1=x2
yl=y2
21=22
i=j
goto2
else
C  the reflection is specular
call specular(j)
C  consider now emission from the point(x2,y2,z2) on surface j with
C the direction cosines (12,m2,n2)
x1=x2
yl=y2
zl=z2
11=12
ml=m2
nl=n2
i=j
goto3
endif
1 continue
999 CONTINUE

[eNe R NoNe]

C  OUTPUT SOLUTION

call output

close(10)

close(20)

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeececoccccccecccceccece
CCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

subroutine const
C  This subroutine set the constants of the problem
C

integer nbundles,nrings,nelemt,i,k(69),seed!,seed2

double precision pi,alpha,H,R,l.e,xa,ya,xb,yb,xc,yc,xd,yd,xe,ye,

+ emiss1,absorptl,ratiol,emiss2,absorpt2.ratio2,
+ A(69),emiss(69),absorpt(69),ratio(69),
+ t,beta

C

COMMON/RANDOM/seed] seed2

COMMON/GEOM 1/nrings,alpha, H,R ,pi

COMMON/GEOM,e

COMMON/POINTABC/xa,ya,xb,yb.xc,yc

COMMON/POINTDE/xd,yd.xe,ye

COMMON/PROP1/A emiss,nelemt

COMMON/PROP2/absorpt ratio,nbundles
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COMMON/SUBSTRATE%X

C  geometric constants :
pi=dacos(-1.d0)
alpha=2.d0*pi/3.d0
H=15.244-2
1=9.1444d-3
e=0.15244-3
R=5.d-2
t=dsqrt((1/2.d0)**2+((R-e)/2.d0)**2)
beta=datan(l/(R-¢))
xa=t*cos(alpha/2.d0-beta)
ya=t*sin(alpha/2.d0-beta)
xb=xa+e*cos(alpha/2.d0)
yb=ya+e*sin(alpha/2.d0)
xc=t*cos(alpha/2.d0+beta)
yc=t*sin(alpha/2.d0+beta)
xd=xc+e*cos(alpha/2.d0)
yd=yc+e*sin(alpha/2.d0)
xe=-R*sin(alpha-pif2.d0)
ye=R*cos(alpha-pi/2.d0)
nbundles=100000
nrings=16
nelemt=5+4*nrings

C  seed for the random number generator :
seed1=12056
seed2=08013
call rmarin(seedl, seed2)

radiative properties :
in the single housing chamber
emiss1=0.020d0
absorpt1=0.020d40
ratio 1=0.95d0
C in the substrate
emiss2=0.80d0
absorpt2=0.80d0
ratio2=0.15d0
do i=1,nelemt
if (i.le.5) then
emiss(i)=emiss1
absorpt(i)=absorpt1
ratio(i)=ratiol
else
emiss(i}=emiss2
absorpt(i)=absorpt2
ratio(i)=ratio2
endif
enddo

eNeNe!

C
C define function k used for the surfaces in the substrate material
do i=1,6
k(i)=0

enddo
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do i=7,6+nrings-1
k(i)=k(i-1)+1

enddo

k(6+nrings)=0

do i=7+nrings,6+2*nrings-1
k(i)=k(i-1)+1

enddo

k(6+2*nrings)=0

do i=7+2*nrings,6+3*nrings-1
k(i)=k(i-1)+1

enddo

k(6+3*nrings)=0

do i=7+3*nrings,6+4*nrings-1
k()=k(i-1)+1

enddo

C  area of each surface
A(1)=H*R
A(2)=H*R
A(3)=alpha*R*H
A(4)=pi*R**2/3.d0
A(5)=pi*R**2/3.d0
do i=6,(6+4*nrings-1)
if (6.1e.i.and.i.le.(6+2*nrings-1)) A(i)=1*H/nrings
if ((6+2*nrings).le.i.and.i.le.(6+4*nrings-1)) A(i)=e*H/nrings
enddo

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcecececececececceeccececececcccececceccce
subroutine ptofem(i)
C  This subroutine determines the point of emission on surface i
C
integer ik(69),seed1,seed2,nrings
double precision R,H,l.e,alpha,pi,xa,ya,xb,yb,xc,yc,xl,yl.zl,
+ urand,randl,rand2,constl,const2

COMMON/RANDOM/seed1 ,seed2
COMMON/GEOM 1/nrings,alpha,H,R pi
COMMON/GEOM2/Le
COMMON/POINTABC/xa,ya,xb,yb,xc,yc
COMMON /SUBSTRATE/X
COMMON/POINT1/x1,y1,z1

C  if surface 1 is emitting :
if (i.eq.1) then
x1=R*urand()
y1=0.d0
z1=H*urand()
else

C  if surface 2 is emitting :
if (i.eq.2) then
rand l=urand()
x1=-cos(alpha/2.d0)*R*rand 1
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10

C
C

11

y1=sin(alpha/2.d0)*R *rand1
z1=H*urand()
else

if surface 3 is emitting :
if (i.eq.3) then
randi=urand()
x1=R*dcos(alpha*randl)
y1=R*dsin(alpha*randl)
z1=H*urand()

else

if surface 4 is emitting :
if (i.eq.4) then
rand1=urand()
rand2=urand()
x1=R*dsqrt(rand1)*dcos(alpha*rand2)
y1=R*dsqrt(rand1)*dsin(alpha*rand2)
z1=0.0
neglect the case where the point of emission is in the 'hole’
corresponding to the substrate material
constl=((x1-xa)*(yb-ya)-(y1-ya)*(xb-xa)y/
+ ((xc-xa)*(yb-ya)-(yc-ya)*(xb-xa))
const2=((x 1-xa)-const1*(xc-xa))/(xb-xa)
if (0.d0.1t.constl.and.constl It.1.and.
+ 0.d0.1t.const2.and.const2.1t.1) go to 10
else

if surface 5 is emitting :
if (i.eq.5) then
rand 1=urand()
rand2=urand()
x1=R*dsqrt(rand1)*dcos(alpha*rand2)
y1=R*dsqrt(rand1)*dsin(alpha*rand2)
z1=H
neglect the case where the point of emission is in the ‘hole’
corresponding to the substrate material
constl=((x1-xa)*(yb-ya)-(yl-ya)*(xb-xa))/
+ ((xc-xa)*(yb-ya)-(yc-ya)*(xb-xa))
const2=((x1-xa)-const1*(xc-xa))/(xb-xa)
if (0.d0.lt.constl.and.constl.It.1.and.
+ 0.d0.It.const2.and.const2.1t.1) go to 11
else

if a surface on the front side of the substrate material is emitting :
if (6.le.i.and.i.le.(6+nrings-1)) then
rand1=urand()
x1=-sin(alpha/2.d0)*1*rand1+xb
yl=cos(alpha/2.d0)‘l"‘randl+yb
z1=H/nrings*urand()+k(i)*H/nrings
else

if a surface on the back side of the substrate material is emitting :

if ((6+nrings).le.i.and.i.le.(6+2*nrings-1)) then
rand1=urand()
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x1=-sin(alpha/2.d0)*1*rand1 +xa

yl=cos(alpha/2.d0)*I*randl+ya

z1=H/nrings*urand()+k(i)*H/nrings
clse

if a surface on the left side of the substrate material is emitting :
if ((6+2*nrings).le.i.and.i.le.(6+3*nrings-1)) then
rand l=urand()
xl=cos(alpha/2.d0)*e*rand1+xa
yl=sin(alpha/2.d0)*e*rand1+ya
z1=H/nrings*urand()+k(i)*H/nrings
else

if a surface on the right side of the substrate material is emitting :
if ((6+3*nrings).le.i.and.i.le.(6+4*nrings-1)) then
rand 1 =urand()
x1=cos(alpha/2.d0)*e*rand1+xc
yl=sin(alpha/2.d0)*e*rand1+yc
z1=H/nrings*urand()+k(i)*H/nrings
endif
endif
endif
endif
endif
endif
endif
endif
endif

return
end

CCCCCCCCCCCCCCCCCCCeceecececcececcececceccceececccecccececceccecececceccecccccecececcce

C
C

C

subroutine adjust{l,m,n)
This subroutine adjusts the direction cosines to avoid accumulated errors

double precision 1 m,n,0

o=dsqrt(1**2+m**2+n**2)
I=Vo

m=m/o

n=n/o

return
end

CCCCCCCCCCCCCeeeeceeeececeececeeceececcceceeceececeeecececececececececcececcececccceccecccceccccecc

C
C
C

subroutine fdirofem(i)
This subroutine determines the direction cosines (11,m1,n1) of emission
from surface i

integer 1,i2,k(69),nrings,seedl,seed2
double precision H,alpha,R,pi,x1,y1,z1,xa,ya,xb,yb,xc,yc,urand,
+ 11,m1.nl,theta,phi

COMMON/RANDOM/seed seed2
COMMON/GEOM V/nrings.alpha,H,R,pi
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0onn

COMMON/POINTABC/xa,ya,xb,yb,xc,yc
COMMON /SUBSTRATE/k
COMMON/POINT1/x1,y1,z1
COMMON/DIRECTION1/11,m1,n1

for a diffuse emitter, the angles theta and phi giving the direction of
emission in the enclosure are known :

theta=dasin(dsqrt(urand()))

phi=2.d0*pi*urand()

if surface 1 is emitting :
if (i.eq.1) then
H=sin(theta)*sin(phi)
m1=cos(theta)
nl=sin(theta)*cos(phi)
check nl.s1>0
if (m1.16.0.d0) write(10,*)'surfl : nl.s1<0 ¥’
else

if surface 2 is emitting :

if (i.eq.2) then

1 =cos(alpha/2.d0)*sin(theta)*sin(phi)+
+ sin(alpha/2.d0)*cos(theta)

m1=cos(alpha/2.d0)*cos(theta)-
+  sin(alpha/2.d0)*sin(theta)*sin(phi)

nl=sin(theta)*cos(phi)

check nl.51>0

if ((sin(alpha/2.d0)*11+cos(alpha/2.d0)*m1).1t.0.d0)
+  write(10,*)surf2 : nl.sl<0 !

else

if surface 4 is emitting :
if (i.eq.4) then

N =-sin(theta)*sin(phi)

m 1=sin(theta)*cos(phi)

nl=cos(theta)

check nl.s1>0

if (n1.10.0.d0) write(10,*)'surf4 : n1.s1<0 '
else

if surface S is emitting :
if (i.eq.5) then
11=sin(theta)*sin{phi)
m=sin(theta)*cos(phi)
nl=-cos(theta)
check nl.s1>0
if (-n1.1¢.0.d0) write(10,*)'surfS : nl.s1<0 !'
else

if a surface on the front side of the substrate material is emitting :
if (6.le.i.and.i.le.(6+nrings-1)) then
11=sin(alpha/2.d0)*sin(theta)*sin(phi)+

+ cos(alpha/2.d0)*cos(theta)
ml=sin(alpha/2.d0)*cos(theta)-

+ cos(alpha/2.d0)*sin(theta)*sin(phi)
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nl=sin(theta)*cos(phi)

C check nl.51>0
if ((cos(alpha/2.d0)*11+sin(alpha/2.d0)*m1).1t.0.d0)
+ write(10,*)'case6 : nl.si<0 V'
else
C

C if a surface on the back side of the substrate material is emitting :
if ((6+nrings).le.i.and.i.le.(6+2*nrings-1)) then
11=-sin(alpha/2.d0)*sin(theta)*sin(phi)-
+ cos{alpha/2.d0)*cos(theta)
ml=-sin(alpha/2.d0)*cos(theta)+
+ cos(alpha/2.d0)*sin(theta)*sin(phi)
nl=sin(theta)*cos(phi)
C check nl.s1>0
if ((-cos(alpha/2.d0)*11-sin(alpha/2.d0)*m1).1t.0.d0)
+ write(10,*)'case7 : nl.s1<0 !
else
C
C if a surface on the left side of the substrate material is emitting :
if ((6+2*nrings).le.i.and i.le.(6+3*nrings-1)) then
11=sin(alpha/2.d0)*cos(theta)-

+ cos(alpha/2.d0)*sin(theta)*sin(phi)
ml=-os(alpha/2.d0)*cos(theta)-
+ sin(alpha/2.d0)*sin(theta)*sin(phi)
nl=sin(theta)*cos(phi)
C check nl.s1>0

if ((sin(alpha/2.d0)*11-cos(alpha/2.d0)*m1).1t.0.d0)
+ write(10,*)'case8 : nl.s1<0 !
else

C if a surface on the right side of the substrate material is emitting :
if ((6+3*nrings).le.i.and.i.le.(6+4*nrings-1)) then
11=-sin(alpha/2.d0)*cos(theta)+
+ cos(alpha/2.d0)*sin(theta)*sin(phi)
ml=+cos(alpha/2.d0)*cos(theta)+
+ sin(alpha/2.d0)*sin(theta)*sin(phi)
nl=sin(theta)*cos(phi)
C check nl.s1>0
if ((-sin(alpha/2.d0)*11+cos(alpha/2.d0)*m1).1t.0.d0)
+ write(10,*)'case9 : nl.sl<0 !'
else

C  if surface 3 is emitting :
if (i.eq.3) then
nl=sin(theta)*cos(phi)
ml=sin(theta)*sin(phi)*x1/R-cos(theta)*y1/R
11=-sin(theta)*sin(phi)*y1/R-cos(theta)*x1/R
C check nl.s1>0
if ((-x1/R*11-y1/R*m1).1t.0.d0) write(10,*)'surf3 : nl.s1<0 !
endif
endif
endif
endif
endif
endif
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endif
endif
endif

C  adjust the direction cosines to avoid accumulated errors
call adjust(11,m1,nl)
C
return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCeCee
subroutine chedim45(x2,y2,z2,alpha,pi,xe,R,L2)
C  This subroutine checks if point 2 (x2,y2,22) is on surface 4 or 5.
C  If the coordinates satisfy the surface limits then L2 is computed.
C

integer rep
double precision x1,y1,z1,x2,y2,22,alpha,pi,xe,R,1.2,
+ constl,const2,xa,ya,xb,yb,xc,yc,length,beta

COMMON/POINTABC/xa,ya,xb,yb,x¢,yc
COMMON/POINT1/x1,yl,zl

length=dsqrt(x2**2+y2**2)
if (length.le.R.and.(0.d0).le.y2.and.y2.le.R.and.
+ xe.le.x2.and.x2.le.R) then
C neglect the case where point 2 is in the hole'corresponding to the
C substrate material
constl=((x1-xa)*(yb-ya)-(yl-ya)*(xb-xa))/
+ ((xc-xa)*(yb-ya)-(yc-ya)*(xb-xa))
const2=((x1-xa)-const1*(xc-xa))/(xb-xa)
if (0.d0.1t.constl.and.constl.1t.1.and.
+ 0.d0.1t.const2.and.const2.1t.1) go to 45
if (x2.1t.(0.d0)) then
if (y2.1t(1.d-10)) y2=14-10
beta=datan(dabs(x2/y2))
if (beta.lt.(alpha-pi/2.d0)) then
rep=0
else
rep=1
endif
endif
if (x2.ge.(0.d0)) rep=0
else
rep=1
endif
if (rep.eq.0) L2=dsqrt((x2-x1)**2+(y2-y1)**2+(z2-21)**2)
C
45 retum
end
CCCCCCCCCCCCCCCCCCCOCCOCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCeeeeccecceeceecec
subroutine chedim289(x2,y2,z22,H,a,b,c.d,L2)
C This subroutine checks if point 2 (x2,y2,22) is on surface 2, or
C  on the left or right side of the substrate material.
C  If the coordinates satisfy the surface limits then L2 is computed.
C

double precision x2,y2,22,x1,y1,21,H.ab.c.d.L2
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C
COMMON/POINT1/x1,y1,z1
C
if ((0.d0).1t.z2.and.z2.1t H.and.a.1e.x2.and .x2.le.b.
+ and.cle.y2.and.y2.le.d) then
L2=dsqrt((x2-x1)**2+(y2-y1)**2+(22-z1)**2)
endif
C
return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeceeecececceccecccocceeccec
subroutine chedim67(x2,y2,22,H,a,b,c,d,1.2)
C  This subroutine checks if point 2 (x2,y2,22) is on the front or back side
C  of the substrate material.
C  If the coordinates satisfy the surface limits then L2 is computed.
(o)

double precision x2,y2,z2,x1,y1,z1,H,a,b,c,d, L2

(@]

COMMON/POINT /x1,y1,z1
C
if ((0.d0).1t.z2.and.z2.1t H.and.a.lt.x2.and.x2.1t.b.
+ and.c.lt.y2.and.y2.ltd) then
L2=dsqrt((x2-x1)**2+(y2-y1)**2+(22-21)**2)
endif

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeec
subroutine chedim1(x2,y2,22,H,a,b,1.2)
C  This subrourine cheks if point 2 (x2,y2.22) is on surface 1.
C  If the coordinates satisfy the surface limits then L2 is computed.
C

double precision x2,y2,22,x1,y1,z1,H,a,b,1.2
COMMON/POINT1/x1,y1,21

if ((0.d0).1t.z2.and.z2.1t H.and .a.1t.x2.and.x2.le.b) then
L2=dsqrt((x2-x1)**2+(y2-y1)**2+(z2-21)**2)
endif

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCOCCCCCCCCCCCCCCCee
subroutine chedim3(x2,y2,z2,xe,H,R,L2)
C  This subrourine cheks if point 2 (x2,y2.22) is on surface 3.
C  If the coordinates satisfy the surface limits then L2 is computed.
C

double precision x2,y2,22,x1,y1,z1,xe,H.R,L2
COMMON/POINT l/x1,y1,z1

if ((0.d0).1t.z2.and.z2.1t.H.and.(0.d0).le.y2.and.y2.le.R.and.
+ xe.ltx2.and.x2.le.R) then

L2=dsqrt((x2-x1)**24+(y2-y1)**2+(z2-21)**2)
endif
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C
return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeccocccecccccececccecce
subroutine quadsolve(il,i2,i,R,root)
C  this subroutine gives the roots of the equation ax**2+b*x+c=0
C
integer i1,i2,i
double precision a,b,c,d,root(2),x1,y1,z1,11,m1,nl,R

COMMON/POINT/x1,y1,z1
COMMON/DIRECTION1/11,m1,nl1

a=(11/n1)**2+(m1/n1)**2
b=2.d0/n1*(11*(x1-11¥21/n1)+m1*(yl-m1*z1/nl1))
c=(x1-11*z1/n1)**2+(yl-m1*z1/nl)**2-R**2
d=(b**2-4.d0*a*c)
if (d.it.0) then
write(10,*)'quadsolve : complex roots !'
write(10,*)'il1=",il
write(10,*)'i2=",i2
write(10,*)i= ',i
write(10,*)d= '.d
stop
else
root(1)=(-b-dsqrt(d))/(2.d0*a)
root(2)=(-b+dsqrt(d))/(2.d0*a)
endif

return
end
CCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
subroutine finterse(il,i2,i,j,L.Lmin)
C  This subroutine finds point 2 (x2,y2,z2) where the emitted energy bundle
C  strikes the enclosure wall.
C It also identifies which surface j the energy bundie striked
C

integer ik,k2,nrings,j,i2,il

double precision pi,x1,y1,z1,11.m1,n1,H,R alpha,x2,y2,22,Limin,
+  x(9),y(9).29)L(9).

+ root(2),xa,ya,xb,yb,xc,yc,xd,yd,xe,ye

COMMON/GEOM I/nrings,alpha,H,R pi
COMMON/POINTABC/xa,ya,xb,yb.xc,yc
COMMON/POINTDE/xd,yd,xe,ye
COMMON/POINT1/x1,yl,z1
COMMON/POINT2/x2,y2,22
COMMON/DIRECTION1/11,m1,nl

C  initialize all distances to a big value 10d10
do k=19
L(k)=10.d10
enddo

C  case 1 : the energy bundle strikes surface 1
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C  if the emitting surface is 1 or a surface on the right side of
C the substrate material, then reject case 1
if ((i.eq.1).or.((6+3*nrings).lc.i.and.i.le.(6+4*nrings-1))) then
go to 102
endif
101 y(1)=0.d0
z(1)=z1-n1*yl/ml
x(1)=11*z(1)/n1+x1-11*z1/nl
check if (x2,y2,22) is on surface 1
call chedim1(x(1),y(1),z(1),H,(0.d0),R,L(1))

9]

case 2 : the energy bundle strikes surface 2
if the emitting surface is 2 or a surface on the left side of
the substrate material, then reject case 2
if ((i.eq.2).or.((6+2*nrings).le.i.and.i.le.(6+3*nrings-1))) then
go to 103
endif
102 z(2)=nl1/(sin(alpha/2.d0)*11+cos(alpha/2.d0y*m1)*(sin(alpha/2.d0)*
+  (11*zl/nl1-x1)+cos(alpha/2.d0)*(m1*zi/nl-y1))
x(2)11*z(2)/n1+x1-11*z1/n1
y(2)=m1*z(2)/n1+yl-m1*z1/nl
check if (x2,y2,22) is on surface 2
call chedim289(x(2),y(2),z(2).H,xe,(0.d0),(0.d0),ye,L(2))

onon

@]

case 3 : the energy bundle strikes surface 3
if the emitting surface is on the back side of the substrate,
then reject case 3
if ((6+nrings).le.i.and.i.le.(6+2*nrings-1)) then
go to 104
endif
103 call quadsolve(il,i2,i,R,root)
z(3)=root(1)
x(3)=11*ro0t(1)/nl1+x1-11*z1/nl
y(3)=m1*root(1¥/nl+yl-m1*z1/nl
C  check if (x2,y2,22) is on surface 3
call chedim3(x(3).y(3).z(3),xe,H,R,L(3))
C  if (x2,y2,22) is not on surface 3 or if (x2,y2,22)=(x1,y1,z1),
C  then reject root(1) and study root(2)
if ((1.(3).1t.1d-10).0r.(L(3).eq.10d10)) then
z(3)=root(2)
x(3)=11*root(2)/nl+x1-11*z1/nl
y(3)=m1*root(2)/nl1+yl-m1*zl/nl
C  check if (x2,y2,22) is on surface 3
call chedim3(x(3),y(3).z(3),xe,H,R,L(3))
C  if (x2,y2,22)=(x1,yl,z1), then reject the solution
if (L(3).1t.1d-10) L(3)=10d10
endif

nonon

case 4 : the energy bundle strikes surface 4
if the emitting surface is 4, then reject case 4
if (i.eq.4) then

go to 105
endif
104  2(4)=0.d0
x(4)=x1-11*z1/nl

noen
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y(4=yl-m1*zl/nl
C  check if (x2,y2.22) is on surface 4
call chedim45(x(4),y(4).2(4),alpha,pi,xe,R,1(4))

case S : the energy bundle strikes surface 5

if the emitting surface is 5, then reject case 5

if (i.eq.5) then

go to 106

endif

105 z(5=H
x(5)=11*z(5)/n1+x1-11*z1/nl
y(5)=m1*z(5)/nl+yl-m1*zi/nl

C check if (x2,y2,22) is on surface 5

call chedim45(x(5),y(5).z(5),alpha,pi.xe,R,L(5))

non

if the emitting surface is in the substrate material,
then reject cases 6,7,8,9

if (6.le.i.and.i.le.(6+4*nrings-1)) then

go to 110

endif

0onn

C
C  case 6 : the energy bundle strikes the front surfaces of the substrate
C material (surfaces 6 to 6+nrings-1)
106 z(6)=n1/(cos(alpha/2.d0)*11+sin(alpha/2.d0y*m1)*(cos(alpha/2.d0)*
+ (xb+11*zl/nl-xl)+sin(a1pha/2.d0)'(yb+m1‘zl/n1-yl))
x(6)=11*z(6)/n1+x1-11*z1/nl

y(6)=m1*z(6)/nl+yl-m1*z1/nl

check if (x2,y2,22) is on the front side of the substrate material
call chedim67(x(6),y(6),2(6).H,xd,xb,yb,yd,L(6))

9]

case 7 : the energy bundle strikes the back surfaces of the substrate
material (surfaces 6+nrings to 6+2nrings-1)

if the emitting surface is 3, then reject case 7
if (i.eq.3) then

go to 108
endif
107 z(7)=n1I(cos(alpha/2.d0)‘l1+sin(a1pha/2.d0)‘m1)"(cos(alpha/2.d0)*
+ (xa+11*z1/n1-x1)+sin(alpha/2.d0)*(ya+m1*z1/nl-y1))
x(7=11*z(7)/n1+x1-11*z1/nl

y(T)=m1*z(7)/nl1+yl-m1*z1/nl

check if (x2,y2,22) is on the back side of the substrate material
call chedim67(x(7).y(7),2(7),H,xc,xa,ya,yc,L(7))

noon

0

case 8 : the energy bundle strikes the left surfaces of the substrate
material (surfaces 6+2nrings to 6+3nrings-1)
if the emitting surface is 2, then reject case 8
if (i.eq.2) then
go to 109

endif

108  z(8)=n1/(-sin(alpha/2.d0)*11+cos(alpha/2.d0)*m1)*
+ (-sin(alpha/2.d0)*(xa+l1*zl/nl-x1)+
+  cos(alpha/2.d0)*(ya+m1*zi/nl-y1))
x(8)=11*z(8)/n1+x1-11*z1/nl
y(8)=m1"‘z(8)/n1+y1-ml“zl/n1

C check if (x2,y2,22) is on the left side of the substrate material

aononoon
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call chedim289(x(8),y(8),z(8),H,xa,xb,ya,yb,L(8))

case 9 : the energy bundle strikes the right surfaces of the substrate
material (surfaces 6+3nrings to 6+4nrings-1)
if the emitting surface is 1, then reject case 9
if (i.eq.1) then
go to 110
endif
109  z(9)=nl/(-sin(alpha/2.d0)*11+cos(alpha/2.d0)*m1)*
+  (-sin(alpha/2.d0)*(xc+11*z1/nl-x1)+
+ cos(alpha/2.d0)*(yc+m1*z1/nl-yl))
x(9)=11*2(9)/n1+x1-11*z1/nl
Y(9)=m1*2(9)/nl+yl-m1*z1/nl
C  check if (x2,y2,z2) is on the right side of the substrate material
call chedim289(x(9),y(9),z(9),H,xc,xd,yc,yd,L(9))

ioNeNoNe

C
C  find the shortest length of all possible solutions :
110 Lmin=MIN(L(1),L(2),L(3),L(4).L(5),.L(6),L(7),L(8),L(9))
If (Lmin.eq.L(1)) k2=1
If (Lmin.eq.L(2)) k2=2
If (Lmin.eq.L(3)) k2=3
If (Lmin.eq.L(4)) k2=4
If (Lmin.eq.L(5)) k2=5
If (Lmin.eq.L(6)) k2=6
If (Lmin.eq.L(7)) k2=7
If (Lmin.eq.L(8)) k2=8
If (Lmin.eq.L(9)) k2=9
C  the correct point of intersection corresponds to the shortest lenght
x2=x(k2)
y2=y(k2)
22=7(k2)

C  now identify the surface for (x2,y2,z2)
if (k2.eq.1) j=1
if (k2.eq.2) j=2
if (k2.eq.3) j=3
if (k2.eq.4) j=4
if (k2.eq.5) j=5
if (k2.eq.6) then
do k=0,(nrings-1)
if ((k*H/nrings).le.z2.and.z2.1t.((k+1)*H/nrings)) j=k+6
enddo
else
if (k2.eq.7) then
do k=0,(nrings-1)
if ((k*H/nrings).le.z2.and.z2 1t.((k+1)*H/nrings))
+ j=(k+nrings)+6
enddo
else
if (k2.eq.8) then
do k=0,(nrings-1)
if ((k*H/nrings).le.z2.and.z2.1t.((k+1)*H/nrings))
+ j=(k+2*nrings)+6
enddo
else
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if (k2.eq.9) then
do k=0,(nrings-1)
if ((k*H/nrings).le.z2.and.z2.1t.((k+1)*H/nrings))
+ j=(k+3*nrings)+6
enddo
endif
endif
endif
endif

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeceeceeee
subroutine fcos2(l.m,n,12,m2,n2)
C This subroutine determines the direction (12,m2,n2) of reflection on a surface.
C The direction (11,m1,n1) of emission and the normal unit vector to the
C surface are known.
C

double precision 11,m1,n1,1,m,n,12.m2,n2

@]

COMMON/DIRECTION1/11,m1,nl

12=11-2.d0*1*(11 *1+m1*m+nl*n)
m2=m1-2.d0*m*(11*1+m1*m+n1*n)
n2=n1-2.d0*n*(11*1+m1*m+nl*n)

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecceceeee
subroutine specular(j)
C For a given direction (11.m1,n1) of emission, this subroutine computes
C the direction (12,m2,n2) of reflection on each surface of the enclosure.
C (1 m,n) are the coordinates of the normal unit vector to the surface.
C

integer j,nrings
double precision 11.m1,n1,12,m2,n2,x2,y2,22,L.m,n,alpha,H.R pi

9]

COMMON/DIRECTION1/11,m1,nl
COMMON/DIRECTION2/12,m2,n2
COMMON/POINT2/x2,y2,22
COMMON/GEOM I/nrings,alpha,H.R ,pi

C if reflection occurs on surface 1 :
if (j.eq.1) then
1=0.d0
m=1.d0
n=0.d0
call fcos2(1,m,n,12,m2,n2)
else

C if reflection occurs on surface 2 :
if (j.eq.2) then
I=sin(alpha/2.d0)
m=cos(alpha/2.d0)
n=0.d0
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call fcos2(l,m,n,12,m2,n2)

else

if reflection occurs on surface 3 :
if (j.eq.3) then

I=-x2/R

m=-y2/R

n=0.d0

call fcos2(l,m,n,12,m2,n2)
else

if reflection occurs on surface 4 :
if (j.eq.4) then

=0.d0

m=0.d0

n=1.d0

call fcos2(l,m,n,12,m2,n2)
else

if reflection occurs on surface 5 :
if (j.eq.5) then
1=0.40
m=0.d0
n=-1.d0
call fcos2(l,m,n,12,m2,n2)
else

if reflection occurs on the front side of the substrate material :

if (6.le.j.and.j.le.(6+nrings-1)) then
I=cos(alpha/2.d0)
m=sin(alpha/2.d0)
n=0.d0
call fcos2(1,m,n,12,m2,n2)

else

if reflection occurs on the back side of the substrate material :
if ((6+nrings).le.j.and.j.le.(6+2*nrings-1)) then ‘
I=-cos(alpha/2.d0)
m=-sin(alpha/2.d0)
n=0.d0
call fecos2(l,m,n,12,m2,n2)
else

if reflection occurs on the left side of the substrate material :
if ((6+2*nrings).le.j.and.j.le.(6+3*nrings-1)) then
l=sin(alpha/2.d0)
m=-cos(alpha/2.d0)
n=0.d0
call fcos2(l,m,n,12,m2,n2)
else

if reflection occurs on the right side of the substrate material :
if ((6+3*nrings).le.j.and.j.le.(6+4*nrings-1)) then
l=-sin(alpha/2.d0)
m=cos(alpha/2.d0)
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n=0.d0
call fcos2(l,m,n,12,m2,n2)
endif
endif
endif
endif
endif
endif
endif
endif
endif

C  adjust the direction cosines to avoid accumulated errors
call adjust(12,m2,n2)

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeecececcecececceecc
subroutine output
C  This subroutine computes the distribution factors Dij and Dtot.
C It also checks the convergence of the solution.
C

integer i,j,countelt(69),nelemt
double precision emiss(69),A(69),countDij(69,69),Dij(69,69),

+ Dtot(69),error(69),E
C
COMMON/COUNTER/countDij,Dij, Dtot,countelt
COMMON/PROP1/A emiss,nelemt
C

C  computation of the distribution factors Dij and Dtot
do i=1,nelemt
Dtot(i)=0.d0
do j=1,nelemt
Dij(i,j )=countDij(i,j)/countelt(i)
Dtot(i)=Dtot(i)+Dij(i,j)
write(10,*)D(".i.".'j., )= "Dij(i)
write(20,*)Dij(i.j)
enddo
write(10,*)'Dtot(’,i,)= ‘,Dtot(i)
enddo

check convergence of the solution
the 'error’ for each surface and the weighted "Error' are computed :
do i=1,nelemt
error(i)=0.d0
do j=1,nelemt
error(i)y=error(i)+emiss(j)*A(j)* Dij(j.i)
enddo
error(i }=error(i)/emiss(i)/A(i)-1.d0
enddo
E=0.d0
Asum=0.d0
do i=1,nelemt
E=E+A(i)*error(i)
Asum=Asum+A(i)

non
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enddo
E=dabs(E/Asum)
write(10,*)E ="E

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCOCCCCCCC
subroutine rmarin(ij, kl)
C This is the initialization routine for the random number generator RANMAR()
C NOTE: The seed variables can have values between: 0 <=IJ <=31328
C 0 <= KL <= 30081
C The random number sequences created by these two seeds are of sufficient
C length to complete an entire calculation with. For example, if sveral
C different groups are working on different parts of the same calculation,
C each group could be assigned its own 1J seed. This would leave each group
C with 30000 choices for the second seed. That is to say, this random
C number generator can create 900 million different subsequences -- with
C each subsequence having a length of approximately 10°30.
C
C Use 1J = 1802 & KL = 9373 to test the random number generator. The
C subroutine RANMAR should be used to generate 20000 random numbers.
C Then display the next six random numbers generated multiplied by 4096*4096
C If the random number generator is working properly, the random numbers

C should be:

C 6533892.0 14220222.0 7275067.0
C 6172232.0 8354498.0 10633180.0
C

implicit real*8 (a-h, o0-2z)

real*8 u(97), ¢, od, cm

integer 197, j97

logical test

common /rasetl/ u, c, cd, cm, 97, j97, test
test = .false.

if( J .t. 0 .or. 1J .gt. 31328 .or.

1 KL .1t 0 .or. KL .gt. 30081 ) then
write (*, *) ' The first random number seed must have a’
write (*, *) ' value between 0 and 31328
write (*, *)
write (*, *) ' The second seed must have a value between 0'
write (*, *) ' and 30081.'
stop

endif

i=mod(W177, 177) + 2

j=modJ ,177)+2

k = mod(K1L/169, 178) + 1

1=mod(kl, 169)

do2ii=1,97
s =00
t=05
do3jj=1,24

m = mod(mod(i*j, 179)*k, 179)

-
]

J
k
m

e -
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1 = mod(53*1+1, 169)
if (mod(1*m, 64) .ge. 32) then
s=s+t
endif
t=05*t
3 continue
u(ii) =s
2  continue
c = 362436.0 / 16777216.0
cd = 7654321.0/ 16777216.0
cm = 16777213.0 /16777216.0
97 = 97
j97 =133
test = .true.
C
return
end
CCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
real*8 function urand()
C This is the random number generator proposed by George Marsaglia in
C Florida State University Report: FSU-SCRI-87-50
C
implicit real*8 (a-h, 0-z)
real*8 u(97), c, cd, cm
integer 197, j97
logical test
common /rasetl/ u, c, cd, cm, 197, j97, test

if(.not.test) then
write (*, *) 'urand error #1: must call the initialization

+ routine rmarin before calling urand.’
stop

endif

uni = u(i97) - u(i97)

if( uni Jt. 0.0 ) uni = uni + 1.0

u(i97) = uni

97 =197 - 1

if(i97 .eq. 0) 197 =97

j97 =397 -1

if(j97 .eq. 0) j97 = 97

c=c-cd

if(clt00)c=c+cm

uni = uni - ¢

if( uni .1t. 0.0 ) uni = uni + 1.0

urand = uni

C
return

end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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Appendix D

The Fortran Program TQ.FOR

This program, TQ.FOR, computes the unknown temperatures and radiative net heat
fluxes of the surfaces defined for the HTS thermal bridge housing area designed by Kasey
M. Lee. The distribution factors were computed using the program MC.FOR (Appendix

C). This program was developed by Sandrine Garcia, 1994.

COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccceccecccceccceccee
PROGRAM TQMC

C
integer nrings,nelemt,i
double precision T(69),q(69),Qtot,Qbot.Qtopbot,Q54,area(69),
+ A(2,2),C(2),delta(69,69),Dij(69,69),
+ emiss(69),sigma,H,R l.¢,pi,alpha

C
COMMON/PROP/sigma,emiss
COMMON/ELEMT/nelemt
COMMON/SUBSTRATE1/nrings,H
COMMON/SUBSTRATE2/R ,alpha,pi,l.e
COMMON/TEMPERAT/T
COMMON/FLUX/q
COMMON/Q/Qbot,Qtopbot,Qtot, Q54
COMMON/AREA/area
COMMON/FACTOR/Dij
COMMON/KRONEKER/delta
COMMON/MATA/A
COMMON/MATC/C

open(unit=10,file="Q16ngre.out’)
write(10,*)output : Q16ngre.out’

178



write(10,*)'nrings=16'
write(10,*)'nominal estimated values used for the radiative
+properties’
write(10,*)'temperature profile used for the substrate :'
cc  write(10,*)  thermal bridge BSCCO/FSILICA’
cc  write(10,*y  thermal bridge BSCCO/YSZ'
write(10,*)  thermal bridge YBCO/GREEN'

C
C  set constants
call const
C
C  definition of the matrices Dij,delta,A,C
call MDijj
call Mdelta
call MatrixA
call MatrixC
C
C  Computation of Tl and T2
C solve A*T12=C by the Gaussian elimination method
call solve
C
C  Computation of the Fluxes
call compQ
C
write(10,100)

do i=1,nelemt
write(10,110)i,T(i),Q(i),area(i)
enddo
write(10,120)
write(10,121)
write(10,122)Qbot
write(10,130)
write(10,131)
write(10,132)Qtopbot
write(10,140)
write(10,141)
write(10,142)Qtot
write(10,150)
write(10,151)
write(10,152)Q54
100 format(/,1x,'surface’.4x," T(K)', 10x,'Q(W) ', 7x,'area(m2)'/)
110 format(2x.13,5x,f7.3,4x,E11.5,4x,E11.5)
120 format(//,'1. Radiative heat load on the bottom of the
+substrate from the entire enclosure :')
121 format(2x,'Qrad-bot (W) =)
122 format(ix,E14.4)
130 format(/,’2. Radiative heat load on the bottom of the
+substrate from the top of the substrate :')
131 format(2x,'Qrad-topbot (W) =)
132 format(1x,E14.4)
140 format(/,3. Radiative heat load on the entire substrate
+from the entire enclosure :')
141 format(2x,'Qrad-tot (W) =)
142 format(1x,E14.4)
150 format(/,'4. Radiative heat load from surface 5
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+to surface 4 :")
151 format(2x,'Qrad-54 (W) = ")
152 format(1x,E14.4)

close(10)
C

stop

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
CCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCOCCCCCCCCCCCCCee
double precision function Tfsi(x)
This function gives the temperature distribution as a function of x
in the thermal bridge BSCCO/FSILICA.
Tfsi was determined using a polynomial fitting of degree 6.

oNoNeNe!

double precision x,C1,C2,C3,C4,C5,C6,C7

nnon

set the constants
C1=4.8490772d0
C2=1725.5456543d0
C3=-39113.32421d0
C4=651411.5d0
C5=-6100919.5d0
C6=29254182.d0
C7=-55807916.d0
Tfsi=C1+C2*x+C3*x**¥24+C4*x**3+C5*x**4+C6*x **5+CT*x**6

return

end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCOCCOCCCCCCCCCCCCCCCCCCCe
double precision function Tysz(x)
This function gives the temperature distribution as a function of x
in the thermal bridge BSCCO/YSZ.
Tysz was determined using a polynomial fitting of degree 6.

oNoNeoNe|

double precision x,C1,C2,C3,C4,C5,C6,C7

00

set the constants

C1=3.9761219d0

C2=887.8359985d0

C3=-8196.110351d0

C4=95402.742187d0

C5=-729424.d0

C6=3161748.2540

C7=-5818412.5d0
Tysz=C14C2*x+C3*x**2+C4*x**3+C5*x**4+CE*x**5+CT*x**6

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
double precision function Tgreen(x)
C  This function gives the temperature distribution as a function of x
C  in the thermal bridge YBCO/GREEN.
C  Tgreen was determined using a polynomial fitting of degree 6.
C

double precision x,C1,C2,C3,C4,C5,C6,C7
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C
C set the constants
C1=5.3292093d0
C2=1454.327026440
C3=-37262.3789d0
C4=681398.3125d0
C5=-6675988.5d0
C6=33007696.d0
C7=-64334344.40
Tgreen=C1+C2*x+C3*x**2+C4*x**3+C5*x**4+C6*x**5+CT*x**6

return

end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeece

subroutine const
C  This subroutine set the constants of the problem
C

integer nrings,nelemt,i,j

double precision emiss],emiss2,emiss(69),sigma,T(69),q(69),

+ area(69),H,R 1,e,pi,alpha,Tfsi,Tysz, Tgreen
C

COMMON/PROP/sigma,emiss

COMMON/ELEMT/nelemt

COMMON/SUBSTRATE /nrings, H

COMMON/SUBSTRATE2/R,alpha,pi,l,e

COMMON/TEMPERAT/T

COMMON/FLUX/q

COMMON/AREA/area

C  geometric constants :
pi=dacos(-1.d0)
alpha=2.d0*pi/3.d0
H=15.244-2
R=5.d-2
1=9.1444-3
e=0.1524d-3
nrings=16
nelemt=5+4*nrings

C  radiative properties :
sigma=5.6696d-8
emiss1=.020d0
emiss2=.80d0
do i=1.nelemt

if (i.le.5) then
emiss(i)=emiss]
else
emiss(i)=emiss2
endif
enddo

C  define the known Temperatures and Fluxes
q(1)=0.d0
q(2)=0.d0
T(3)=30.d0
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T(4)=4.d0
T(5)=80.d0
do i=0,nrings-1
j=i+6
cc  T()=Tfsi((1+.5d0)*H/nrings)
cc  T(j)=Tysz((i+.5d0)*H/nrings)
T(j)=Tgreen((i+.5d0)*H/nrings)
T(j+nrings)=T(j)
T(+2*nrings)=T(j)
T(+3*nrings)=T(j)
enddo

C  define the area of each surface
area(1)=H*R
area(2)=H*R
area(3)=alpha*R*H
area(4)=pi*R**2/3.d0
area(5)=pi*R**2/3.d0
do i=6,(6+4*nrings-1)
if (6.le.i.and.i.le.(6+2*nrings-1)) area(i)=1*H/nrings
if ((6+2*nrings).le.i.and.i.le.(6+4*nrings-1))
+ area(i)=e*H/nrings
enddo
C
return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceCcececececeecccecccceccec
subroutine MDij
C  This subroutine reads the distribution factors in the enclosure analyzed
C  in the program MCproject.for.
C

integer nelemt,i,j
double precision Dij(69,69)

COMMON/FACTOR/Dij
COMMON/ELEMT/nelemt

open(1,file="100m16n.dat')

do i=1,nelemt

do j=1,nelemt
read(1,*)Dij(i,j)

enddo

enddo

close(1)

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecccceecceccece
subroutine Mdelta
C This subroutine defines the kronecker delta function delta(i,j)
C
integer nelemt,i,j
double precision delta(69,69)
C
COMMON/ELEMT/nelemt
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COMMON/KRONEKER/delta

do i=1,nelemt
do j=1,nelemt
if (i.eq.j) THEN
delta(i,j)=1.d0
else
delta(i,j)=0.d0
endif
enddo
enddo

return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeec
subroutine MatrixA
C This subroutine defines the matrix A(2,2) such that A*T12=C

C
double precision Dij(69,69),A(2,2)
C
COMMON/FACTOR/Dij
COMMON/MATA/A
C
A(1,1)=1.d0-Dij(1,1)
A(1,2)=-Dij(1,2)
A(2.1)=-Dij(2,1)
A(2,2)=1.d0-Dij(2,2)
C
return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
subroutine MatrixC
C This subroutine defines the vector C(2) such that A*T12=C

integer nelemt,j
double precision C(2),T12(2),T(69).Dij(69,69)

COMMON/FACTOR/Dij
COMMON/ELEMT/nelemt
COMMON/TEMPERAT/T
COMMON/MATC/C

C(1)=0.d0
C(2)=0.d0
do j=3,nelemt
C(1)=C(1) + (T())**4*Dij(1)
C(2)=C(2) + (T())**4*Dij(2,))
enddo
C
return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCceeeet
subroutine solve
C this subroutine solve A*T12=C for T1 and T2 using the gaussian
C elimination method
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integer n,i,j.k
double precision A(2,2),C(2),T12(2),T(69),
+ AUG(2,3),PIVOT,TEMP MULT

COMMON/TEMPERAT/T
COMMON/MATA/A
COMMON/MATC/C

n=2
C *form the n*(n+1) augmented matrix AUG by adjoining C to A
DO i=1,n
DO j=1,n
AUG(ij)=A(ij)
ENDDO
ENDDO
DO i=1,n
AUG(i,n+1)=C(i)
ENDDO
DO 70 i=1,n
c * locate nonzero diagonal entry
IF (AUG(i,i).eq.0.D0) THEN
PIVOT=0.D0
j=it+l
30 IF ((PIVOT .eq.0.D0).AND.(j.le.n)) THEN
IF (AUG(j,i).ne.0.D0) PIVOT=j
GO TO 30
ENDIF
IF (PIVOT.eq.0.D0) THEN
STOP 'MATRIX IS SINGULAR'
ELSE
CcC = interchange rows i and PIVOT
DO 40 j=1,n+1
TEMP=AUG(,j)
AUG(,j)=AUG(PIVOT,j)
AUG(PIVOT j=TEMP
40 CONTINUE
ENDIF
ENDIF
C * eliminate ith unknown from equations i+1,...,n
DO 60 j=i+1.n
MULT=-AUG(,i¥AUG(,i)
DO 50 k=i,n+1
AUG(j,k)=AUG(j,k)+MULT*AUG(i k)
50 CONTINUE
60 CONTINUE
70 CONTINUE
C *find the solutions
T12(n)=AUG(n,n+1YAUG(n,n)
DO 90 j=n-1,1,-1
T12()=AUG(j.n+1)
DO 80 k=j+1,n
T12(j)=T12(j)-AUG(j.k)*T12(k)
80 CONTINUE
T12()=T12(GVAUG()
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90 CONTINUE
C
T(1)=(T12(1))**0.25
T(2)=(T12(2))**0.25
C
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
subroutine compQ
C  This subroutine computes the unknown Fluxes in the
C  enclosure analyzed in the program MCproject.for
C

integer nelemt,nrings,i.j

double precision emiss(69),delta(69,69),Dij(69,69),q(69),
+ T(69),area(69),H,sigma,K,

+ Qbot.Qtopbot,Qtot, Q54

COMMON/PROP/sigma,emiss
COMMON/ELEMT/nelemt
COMMON/SUBSTRATE/nrings,H
COMMON/TEMPERAT/T
COMMON/FLUX/q
COMMON/Q/Qbot,Qtopbot,Qtot,Q54
COMMON/AREA/area
COMMON/FACTOR/Dij
COMMON/KRONEKER/delta

do i=3,nelemt
K=0.d0
do j=1,nelemt
K=K-+emiss(i)*sigma*(T(j))**4*(delta(i,j)-Dij(i,))
enddo
(=K
Q(i)=q(i)*area(i)
enddo

1. Compute the radiative heat load on the bottom of the substrate
from the entire enclosure = Qbot(W)

Qbot=Q(6)+Q(22)+Q(38)+Q(54)

ao0nn

2. Compute the radiative heat load contribution from the top (T=80K)
of the substrate to the bottom (T=4K) = Qtopbot(W)
Qtopbot=0.d0
do i=6,(nelemt-nrings+1),nrings
Qtopbot=Qtopbot +
area(i)*emiss(i)*sigma
* ( (T(i))**4 - (T(6+nrings-1))**4 *
( Dij(i,6+nrings-1)
+ Dij(i,6+2*nrings-1)
+ Dij(i,6+3*nrings-1)
+ Dij(i,6+4*nrings-1) } )

nonon

o+ + o+

enddo
C
C 3. Compute the radiative heat load on the entire substrate
C  from the entire enclosure = Qtot(W)
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non

Qtot=0.d0

do i=6,nelemt
Qot=Qtot+Q(i)

enddo

4. Compute the radiative heat load on surface 4 (T=4K)
from surface 5 (T=80K) = Q54(W)
Q54=a:ea(4)"emiss(4)'sigma‘(T(4)"4-T(S)"4*Dij(4,5))

return
end

186



Appendix E

Thermal Conductivity Models

This appendix provides the models of the HTS thermal bridge material thermal

conductivities and the HTS thermal bridge effective thermal conductivities.

E.1 Material Thermal Conductivity Model

The general thermal conductivity equation is (Lee, 1994):

k(T) = a+bT+cT*+dT+eT*+fT>+gT*® . (E.1)

The constants a, b, ¢, d, e, f, and g are provided in Table E.1 for the materials studied

in this project. Figure E.1 shows the plots of the material thermal conductivities.

E.2 HTS Thermal Bridge Effcetive Thermal Conductivity Model

The general effective thermal conductivity equation is:

kAT) = a+bT+cT*dT" . (E.2)
The constants a, b, ¢, and d are provided in Table E.2 for the HTS thermal bridges

studied in this project. Figure E.2 shows the plots of the effective thermal conductivities.
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Table E.1.  Coefficients of the Material Thermal Conductivity Model.
Material BSCCO YBCO FSI YSZ GREEN Zirconia
a 1.430E-1 1.567E-1 1.565E-2 4.464E-1 3.558E-1 -2.045E-1
b 5.445E-2 1.403E-2 2.761E-3 | -2.426E-3 | 7.173E-2 1.159E-1
c -3.517E-3 7.463E-3 1.561E-4 9.229E4 1.066E-2 -1.041E-3
d 1.243E4 | -2.510E4 | -3.076E-6 | -2.793E-5 | -3.706E4 | -2.761E-5
e -2.100E-6 3.437E-6 3.403E-8 3.772E-7 4.814E-6 6.671E-7
f 1.665E-8 -2.201E-8 | -2.009E-10 | -2.395E-9 | -2.839E-8 | -5.127E-9
g -5.035E-11 | 5.450E-11 | 4.826E-13 | 5.839E-12 | 6.370E-11 | 1.367E-11
Table E.2.  Coefficients of the HTS Thermal Bridge Effective Thermal Conductivity
Model.
Thermal BSCCO/ YBCO/ BSCCO/ YBCO/ YBCO/
Bridge FSI FSI YSZ YSZ GREEN
a 4.095E-2 | -4.749E-2 | 3.678E-1 2.793E-1 -7.615E-1
b 4611E-3 | 2.008E-2 | 1274E-2 | 2.822E-2 | 2.916E-1
c 6.988E-5 | -1.37SE4 | 6.400E-S | -2.71SE4 | -3.604E-3
d -5.676E-7 | 2.505E-7 3.723E9 8.222E-7 1.083E-5
*Note: the values for the coefficients a, b, ¢ and d, of the effective thermal

conductivities are valid over the temperature range [4-80 K].
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Appendix F

The Fortran Subroutine KBOX3D.FOR

This subroutine, KBOX3D.FOR, was written as the adapt part of the program
ORTHO3D (provided at the end of the subroutine). KBOX3D.FOR uses the modified
Box-Kanemasu method to estimate the thermal conductivity parameters of the material

thermal conductivities in a HTS thermal bridge.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccceeeec
SUBROUTINE ADAPT

c

¢ HP 77 version, 3-D dp Iso version - DIN

c

c$noextensions

C

C----- STEADY CONDUCTION IN A 3D HALF HTS THERMAL BRIDGE -----
C with isotropic gamma

C

C----- Material Thermal Conductivity Estimation
C Subroutine KBOX3D.FOR, written by sandrine Garcia, 1994.
C

INCLUDE 'common3d.f

Ct‘*t"tl.t't##‘###.#*"t‘t.t‘ttt‘tt“‘#'#it‘tt‘#t‘i‘.t'*‘t‘t‘t#“t#‘ttt*

DIMENSION T1(NI), T2(NI),YI(NI),XI(NI,2),XT(2,NI),

+ B(2),b1(2),b2(2),
+ RES(NI),XTX(2,2),XTY(2),dgb(2),P(2,2),RI(2,2),
+ AUG(2,3),RR(2,2)
C
DIMENSION T(NI,NJ,NK)

EQUIVALENCE (F(1,1,1,1),T(1,1,1))
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ENTRY GRID
C
HEADER=HALF BSCCO/YSZ - L=152.4mm’
PRINTF=K'
C
¢ set geometric dimensions
L = 0.1524d0
¢ if there is a buffer layer (the substrate is FSI)
cce thk2=0.0000003d0
c if there is no buffer layer
thk2 = 0.0d0
rlsuperc = 0.00304840
el = 0.0001524d0
e2 = 0.000050840
a = 0.003048d0
C
¢ zoned grid method
c set x, y and z zones
NZX =1
X7ZONE(1) =1L
NCVX(1) = 100

NZY =2
YZONE(l) = a
NCVY(1)=4
YZONE(2) = rlsuperc/2.d0
NCVY(2)=3
C
NZZ =2
¢ if the substrate is FSI, add 1 CV for the buffer layer
cce NZZ =3
ZZONE(1) = el
NCVZ(1)=3
c if there is no buffer layer
ZZONEQ2) = e2
NCVZ(2)=2
c if there is a buffer layer
ZZONE(2) = thk2
NCVZ(2)=1
ZZONE@3) =e2
NCVZ(3) = 2

REEEE:

CALL ZGRID

0

open(unit=99,file="1yby.d")
cce open(unit=99,file='by.100")
do i=1,102
¢ 102 is the number of data point measurements (L1)
¢ YI(i) is the simulated measured temperature value
read(99,*)YI(i)
enddo
close(99)
open(unit=98,file="1yby.pol')
C
¢ Np is the number of parameters
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[e TN ¢]

Np=2
dB is the parameter variation used in the determination of the
sensitivity coefficients
dB=0.01d0
sigma is the standard deviation of YI(j)
sigma=0.5d0
sigma2=sigma**2
set convergence parameter
epsi = 1.d-5
criter is the convergence parameter for the Box-Kanemasu method
criter=1.d-3
deltal is a constant used in the convergence criterion
deltal=1.d-30
lastk is the maximum number of iterations in the Box-Kanemasu method
lastk=15
last is the maximum number of iterations in the steady state conduction
problem
last=50
itrmin is the minimum number of iterations in the steady state conduction
problem
itrmin=8

Kcount=1
iterk=1

set thermal conductivity coefficients
Bgl = 0.3558d0
Bg2 = 0.07173d0
Bg3 = 0.01066d0
Bgd = -3.7060d-4
Bg3 = 4.814d-6
Bg6 = -2.839d-8
Bg7 = 6.37d-11

Byl = 0.4464d0
By2 = -0.002426d0
By3 = 9.229d4
By4 = -2.793d-5
ByS = 3.772d-7
By6 = -2.395d-9
By7 = 5.839d-12

Bf1 = 0.01565d0
Bf2 = 0.002761d0

Bf3 = 1.561d4
Bf4 = -3.076d-6
BfS = 3.403d-8
Bf6 = -2.009d-10
Bf7 = 4.826d-13
Bzl = -0.2045d0
Bz2 = 0.115940
Bz3 = -0.001041d0
Bz4 = -2.761d-5
Bz5 = 6.671d-7
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Bz6 = -5.127d-9
Bz7 = 1.367d-11

Bybcol = 0.1567d0
Bybco2 = 0.01403d0
Bybco3 = 0.007463d0
Bybcod = -2.51d-4
Bybco5 = 3.437d-6
Bybco6 = -2.2014-8
Bybco?7 = 5.45d-11

Bbsccol = 0.143d0
Bbscco2 = 0.05445d0
Bbscco3 = -0.003517d0
Bbsccod = 1.243d-4
BbsccoS = -2.1d-6
Bbscco6 = 1.665d-8
Bbscco7 = -5.035d-11

C

c set input heat flux (W/m*K)

¢ - if the thermal bridge is YBCO/GREEN
Qyg = 2415.429d0

¢ - if the thermal bridge is YBCO/YSZ
Qyy = 483.237d0

¢ - if the thermal bridge is BSCCO/YSZ
Qby = 380.095d0

c - if the thermal bridge is YBCO/FSI
Qyf = 260.383d0

¢ - if the thermal bridge is BSCCO/FSI
Qbf = 157.302d0

C

¢ Give first estimates for the parameters to be estimated
b1(1)=Bbsccod
b1(2)=Bbscco5
RETURN

ENTRY BEGIN
C
TITLE(1) = TEMPERATURE'
KSOLVE(1)=1
KPRINT(1)=0
KPLOT(1) =0
ITER=0
KSTOP=0
C
c set initial temperatures
do K=1,N1
do J=1 M1
open(unit=14,.file="bf.100")
do I=1,L1
read(14,*)T({1,J,K)
enddo
close(14)
enddo
enddo
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C
if (Kcount.eq.1) then
¢ set parameter values to b1(j)
do j=1,Np
B(j)=b1(j)
enddo
endif

if (Kcount.eq.2) B(Kj)=B(Kj)*(1.d0+dB)

if (Kcount.eq.3) then
alpha=alpha/2.d0
do j=1,Np

B(j)=b1(j)+alpha*dgb(j)

enddo

endif

C
QOUTO = 0.D0
RETURN

Ct_t“tt#tt##tt*tt‘it#*ti**l‘t*#**#***

ENTRY OUTPUT
C
QIN =0.D0
QOUT = 0.D0
DO 203 J=2,M2
DO 203 K=2,N2
QIN = QIN + YCV()*ZCV(K)*FLUXL1(J.K.1)
QOUT = QOUT + YCV())*ZCV(K)*FLUXI1(J.K.,1)
203 CONTINUE
C
DO 200 IUNIT=IU1,IU2
IFAITER.EQ.0) WRITE(IUNIT,210)
210 FORMAT(2X,TTER',3X, T(L1,M2,11),6X," T(L1,M2,12),12X,
+ 'QIN',14X,'QOUT, 10X, NTC(1)")
WRITE(IUNIT,220)ITER, T(L1,M2,11), T(L1,M2,12),QIN,QOUT,NTC(1)
220 FORMAT(2X 14,3X,1PE11.3,5X,1PE11.3,7X,1PE12.3,7X,1PE12 3,
+ 7X,12)
200 CONTINUE
C
¢ create a convergence criterion
IF (ITER.LTITRMIN) RETURN
DIFF = ABS((QOUT-QOUTO¥(QOUT+SMALLY)
QOUTO=QOUT
IF (DIFF.LE.epsi OR.ITER.EQ.LAST) THEN
C
¢ calculate overall energy balance
HTBAL = QIN + QOUT
EBAL = ABS(HTBAL/QIN)
DO 201 IUNIT=IU1IU2
WRITE(IUNIT,202)EBAL
202 FORMAT(/,2X,'EBAL"1PE11.3.))
201 CONTINUE
C
If (Kcount.eq.1) then
¢ First part in the Box-Kanemasu Method
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¢ get numerical temperature solution for B(j)=b1(j)
¢ So is the sum of squares for the B(j)=b1(j) parameter values
S0=0.d0
do i=1,L1
T1G)=T(,M2,11)
RES(@i)=YI(i)-T1(i)
So=So+(RES(1))**2/sigma2
enddo
Kcount=Kcount+1
Kj=1
go to 13
endif
C
If (Kcount.eq.2) then
¢ Second part in the Box-Kanemasu Method
c get numerical temperature solutions for B(Kj)=B(Kj)*(1.d0+dB),Kj fixed
¢ determine sensitivity coefficients
¢ reinitialyze B(Kj)
B(Kj)=b1(Kj)
do i=1,L1
T2(i)=T({,M2,11)
XI(.Kj)=(T2(i)-TL(i)/(B(Kj)*dB)
XT(Kj,i)=X1(i,Kj)
enddo

if (Kj.It.2) then
Kj=Kj+1
go to 13
else
¢ determine matrix XTX(Np,Np)
do j=1,Np
do k=1,Np
XTX(j.k)=0.d0
do i=1,L1
XTX(§.kE=XTX((,k)+XT(.1)*XI(i.kVsigma2
enddo
enddo
enddo
C
¢ determine vector XTY(Np)
do j=1,Np
XTY(j)=0.d0
do i=1,L1
XTY()=XTY(§)+XT(j.i)*RES(i}/sigma2
enddo
enddo
C
¢ Solve XTX*P=RI for P using the gaussian elimination method
c first define RI(Np.Np). the matrix identity
do j=1,Np
do k=1,Np
if (k.eq.j) then
RI(.k)=1.d0
else
RI(j.k)=0.d0
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endif
enddo
enddo
C
¢ solve successively each column of P
do I=1,Np
C  *form the Np*(Np+1) augmented matrix AUG by adjoining RI to XTX
DO i=1,Np
DO j=1.Np
AUG(i,j)=XTX(i,)
ENDDO
ENDDO
DO i=1,Np
AUG(i,Np+1)=RI(,l)
ENDDO
DO 1070 i=1,Np
C  *locate nonzero diagonal entry
IF (AUG(i,i).eq.0.D0) THEN
PIVOT=0.D0
j=i+l
1030 IF ((PTVOT.eq.0.D0).AND.(j.le.Np)) THEN
IF (AUG(j,i).ne.0.D0) PIVOT=j
GO TO 1030
ENDIF
IF (PIVOT.eq.0.D0) THEN
STOP '"MATRIX IS SINGULAR'
ELSE
C  *interchange rows i and PIVOT
DO 1040 j=1,Np+1
TEMP=AUG(ij)
AUG(i,j)=AUG(PIVOT,j)
AUG(PIVOT,j)=TEMP
1040 CONTINUE
ENDIF
ENDIF
C  *eliminate ith unknown from equations i+1,...,.Np
DO 1060 j=i+1.Np
RMULT=-AUGj,i¥AUG(i.i)
DO 1050 k=i,Np+1
AUG(j.k)=AUG(j.k)+RMULT*AUG(i k)

1050 CONTINUE
1060 CONTINUE
1070 CONTINUE

C  *find the solutions
P(Np,)=AUG(Np.Np+1YAUG(Np.Np)
DO 1090 j=Np-1,1,-1
P(j.1)=AUG(.Np+1)
DO 1080 k=j+1.Np
P(.1)=P(j.1)-AUG(.k)*P(k.))

1080 CONTINUE
P(j.)=P(.1/AUG;.j)
1090 CONTINUE
enddo
C

¢ check the correlation matrix before getting to the parameter estimation
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The diagonal terms of the correlation matrix are all unity and the off
-diagonal terms must be in the interval [-1,1]. Whenever all the off
-diagonal terms exceed 0.9 in magnitude, the estimates are highly
correlated and tend to be inaccurate
write(98,'(/,"The correlation matrix is")")
do j=1,Np
do k=1,j
ar=P(j,j)*P(k,k)
RR(j .k)=P(.kYsqrt(ar)
enddo
enddo
do j=1,Np
write(98,'(3E15.7)") (RR(j.k).k=1,j)
enddo

o 060 60

C
¢ determine vector dgb(Np)
do j=1,Np
dgb(j)=0.d0
do k=1,Np
dgb(j)=dgb()+P(j.k)*XTY(k)
enddo
enddo

G is a measure of the slope; it should approach zero at convergence
G=0.d0
do j=1,Np
sum=0.d0
do k=1,Np
sum=sum+XTX(j,k)*dgb(k)
enddo
G=G+dgb(j)*sum
enddo

[¢]

C
Third part in the Box-Kanemasu Method
By the definition of G. it should always be positive
if (G.1t.0.d0) then
write(98,*)'G is negative ! Terminate calculations’
go to 12
endif

[« I ¢]

C
¢ Fourth part in the Box-Kanemasu Method
alpha=2.000d0
AA=1.1d0
Kcount=Kcount+1
goto 13
endif
endif
C
If (Kcount.eq.3) then
Salpha is the sum of squares for the Bcoef(j)=b1(j)+alpha*dgb(j) parameter
values. Salpha decreases towards a positive constant and should be less
than So
Salpha=0.d0
do i=1,L1
T1(i)=TG,M2,11)

o o0 0
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RES(3i)=YI(i)-T1(i)
Salpha=Salpha+(RES(i))**2/sigma2

enddo
C
if (Salpha.gt.So) then
if (alpha.le.0.01d0) then
write(98,*)alpha is too small !’
write(98,'("alpha = ",F12.6,2x,"Salpha = ",E15.6,
+ 2x,"So = ",E15.6))alpha,Salpha,So
go to 12
else
go to 13
endif
endif
C
sumch=So-alpha*G*(2.d0-1.d0/AA)
¢ h is a scalar interpolation factor; its a fraction of the Gauss step

given by the Box-Kanemasu method
if (Salpha.gt.sumch) then
h=alpha**2*G/(Salpha-So+2.d0*alpha*G)
else
h=alpha*AA
endif

[¢]

Calculate the final parameter estimates using h
Also calculate ratio; if it is less than criter, then the change in
the estimated parameters is insignifiant and the iterative process is
terminated. change is used to determine when all parameters stop varying
change=0
do j=1,Np
b2(j)=b1(j)+h*dgb(j)
ratio=abs(b2(j)-b1(j)¥(abs(b1(j))+deltal)
if (ratio.le.criter) change=change+1

o600 0N

enddo
endif
C
¢ Print out the calculate values for h, G, So and Salpha
write(98,1300)

1300 format(5x, 'iter’,10x,'h',13x,'G',12x,'So',11x,'Salpha')
write(98,1301)iterk,h,G,So,Salpha
1301 format(I8,4E14.6./)
C
¢ Print out the final parameter estimates
write(98,*)The final parameter estimate for this iteration is'
write(98,1310) (b2(j)j=1.Np)
1310 format(3E16.6)
C
c Print out the P matrix
write(98,'(/,"The P matrix is")")
do j=1.Np
write(98,1320) (P(j.k).k=1,Np)
enddo
1320 format(3D15.7)
C
if (Np.gt.change.and.iterk le lastk) then
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do j=1,Np
b1(j)=b2()
enddo

Kcount=1

iterk=iterk+1

go to 13
endif

12 close(iu2)
close(98)
STOP 'K ESTIMATION DONE'

C

13  KSTOP=1
ENDIF
RETURN

C#_t_*_t_t_*_*_#_*_#_lt_t_*_t_‘_t_t_l_t_t_l_t-t_t_*_t_t_t_t_#_t_*_t_t_t_t
ENTRY PHI

C

¢ set conductivities
DO 300 K=2,N2
DO 300 J=2M2
DO 300 1=2,L2

C

IF (Z(K).LE.e1) THEN
¢ if the substrate is the GREEN PHASE :

cce GAM(1JK) = Bgl + Bg2*T(1,J K)
ccc 4+ + Bg3*T(LJ,K)**2
cce + + Bgd4*T(1LJ,K)**3
cce + + Bg5*T(1.J.K)**4
cce + + Bg6*T(1J,K)**5

cce + + Bg7*T(LJ,K)**6
¢ if the substrate is YSZ :
GAM({.J.K) = Byl + By2*T(1,J.K)

+ + By3*T(LJK)**2

+ + By4*T(1,J,K)**3

+ + By5*T(L,JK)**4

+ + By6*T(LJ K)**5

+ + By7*T(1.J.K)**6
¢ if the substrate is FSI :
cee GAM(1,].K) = Bfl + Bf2*T(L,}K)
cce + + Bf3*T({1,J,K)**2
cce + + Bf4*T(1,],K)**3
cce  + + BfS*T(1,J,K)**4
cce + + Bf6*T(1.J,K)**5
cc + + Bf7*T{1.J.K)**6

ELSE
C
IF (Z(K).GT.e1.AND.Y(J).LT.a) GAM(1.J K) = 0.d0

C
c if there is a buffer layer (the substrate is FSI)
cee IF (Z(K).GT.e1.AND.Z(K).LE.(e 1 +thk2). AND.
cce + Y(J).GE.a) THEN
ccc GAM(1.1.K) = Bzl + B22*T(1,J.K)
cce + + B23*T(1,J K)**2
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+ Bz4*T(I,J,K)**3
+ Bz5*T(1,1,K)**4
+ Bz6*T(L.J K)**S
+ BZ7*T(@,1K)**6

+ 4+ +

ENDIF

CgEgeE

IF (Z(K).GT (el +thk2). AND.Z(K).LE.(e1+thk2+e2).AND.
+ Y(J).GE.a) THEN
¢ if the superconductor is YBCO :

cce GAM(1,] K) = Bybcol + Bybco2*T(1,J,K)
cce + + Bybco3*T(LJ,K)**2
ccc + + Bybco4*T(1,J,K)**3
ccc  + + BybcoS*T(,J,K)**4
cce + + Bybco6*T(1.JK)**5
cce 4+ + Bybco7*T(1,J,K)**6

¢ if the superconductor is BSCCO :
GAM(1,J.K) = Bbsccol + Bbscco2*T(1,J,K)
+ Bbscco3*T(1,JK)**2
+ B(1)*T(1.),K)**3
+ B(2)*T(@,).K)**4
+ Bbscco6*T(L1,K)**5
+ Bbscco7*T(LJ.K)**6

+ + + + +

ENDIF
ENDIF
300 CONTINUE
C
¢ set boundary conditions
DO 310 K=2,N2
DO 310 J=2,M2
KBCL1(JK) =2
c - for the substrate
IF (Z(K).LE.e1) THEN
FLXCL1(J.K) = Qyf
ELSE

- if there is a buffer layer
IF (Y(J).GE.a.AND.Z(K).GT.e1. AND.Z(K).LE.
+ (el+thk2)) THEN
FLXCL1(J.K) = Qbf
ENDIF

"OgggE" 0

- for the superconductor
IF (Y(J).GE.a.AND.Z(K).GT.(el +thk2). AND.Z(K).LE.
+ (el +thk2+e2)) THEN
FLXCL1(J,K) = Qyf
ENDIF
ENDIF
310 CONTINUE
C
DO 320 K=2,N2
DO 320 1=2.L2
KBCH({1.K)=2
KBCM1(1,K)=2
320 CONTINUE
C
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DO 330 J=2,M2
DO 330 I=2,1L.2
KBCK1(LJ)=2
KBCNI1(LJ)=2
330 CONTINUE
C
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecececccececcececcccceccccecccecccccecceccececceccecceeccec
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcecceeceececececcecccececc

R 2R 22222222222 222 s i 2Rt i 2Rt R sttt 2t

PROGRAM ORTHO3D
x
* Control Volume Method solution of three-dimensional, isotropic
* heat conduction
*
* User portion of code contained in layer*.f
* layer3d.f - standard user subroutine
*

* RS/6000 version - double precision

*

* Program structure similar to that detailed in

* "Computation of Conduction and Duct Flow Heat Transfer",

* S.V. Patankar, Maple Grove, MN: Innovative Research, Inc.

*

* Modified by Sandrine Garcia to implement the Box-Kanemasu estimation procedure
* (see subroutine KBOX3D.FOR) and to compute the dimensionless sensitivity

* coefficients. (see subroutine XI3D.FOR).
*

WRERERRKR KR ESEEREREREERRREEREEEREKER R RS E R RS SRR R R KRR EREE SRR R AR ERRRERBRER

INCLUDE ‘common3d.f

C
CALL DEFLT
CALL GRID
CALL READY
C
93 CALL BEGIN
C

10 CONTINUE
c start iteration of outer loop
CALL OUTPUT
¢ check to see if convergence has occured
IF (KSTOP.NE.O) go to 93
CALL HEART
GO TO 10

STOP

END
EERREEREERBRBEERRRREERE R R TR R R R RN REBS AR R R RN R R KRR ER ARk kR h kR kR kR Rk
c include other subroutines in invariant part

INCLUDE ‘defrd3d.f

INCLUDE ‘heart3d.f

INCLUDE 'solve3d.f

INCLUDE ‘tools3d.f
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Appendix G

The Fortran Program KBOXEFF.FOR

This program, KBOXEFF.FOR, uses the modified Box-Kanemasu method to estimate
the effective thermal conductivities of the HTS thermal bridges. KBOXEFF.FOR has the
ability to estimate these thermal properties either as functions of temperature or as

constants. This program was written by Sandrine Garcia, 1994.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeece
Program Kboxeff

C
integer Np,max,iterk,lastk,set
double precision T,z,sigma,criter,
+ So,Salpha,G,deltal
double precision B(1),b1(1),b2(1),Texact(102),s01(10),
+ X(102),T1(102),T2(102),YY(1020), YI(102),
+ X1(102,1),XT(1,102),XTX(1,1).XTY(1),RES(102),
+ dgb(1),P(1,1),RI(1,1),AUG(1,2),RR(1,1)
cee + X(102),T1(500),T2(500),YY(5000), YI(500),
ccc + X1(500,1).XT(1,500),XTX(1,1).XTY(1),RES(500),
ccc + dgb(1),P(1,1),RI(1,1),AUG(1,2),RR(1,1)
C
COMMON/BCOEF/B
COMMONMICOEFA1
COMMON/LENGTH/X
C

open(unit=98,file='olybf.eff)

¢ SET THE CONSTANTS

¢ Np is the number of parameters to study
Np=1

¢ max is the number of points
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¢ if T(x) is used to estimate the parameters
max=102

¢ if TL is used to estimate the parameters

cce max=500
maxL=102

¢ sigma is the standard deviation of YI(j)
sigma=0.1d0
sigma2=sigma**2

¢ criter is the convergence parameter for the Box-Kanemasu method
criter=1.d-4

¢ deltal is a constant used in the convergence criterion
deltal=1.d-30

¢ lastk is the maximum number of iterations in the Box-Kanemasu method
lastk=10

C

¢ if the exact temperatures from ORTHO3D are used as measured data
cce open(unit=99,file="bf.100')

cce do i=1,maxL

cce read(99,*)Texact(i)

¢ if T(x) is used to estimate the parameter
cce YI(i)=Texact(i)

cce enddo

¢ if TL is used to estimate the parameter
cce do i=1,max

cee YI(i)=Texact(maxL)

cce enddo

C

¢ if simulated temperature are used as measured data
¢ read YYI(i) which contains 10 simulated data sets
c if T(x) is used to estimate the parameter

open(unit=99 file="01ybf.d")

do i=1,1020

read(99,*)YY(i)

enddo
¢ if TL is used to estimate the parameter
cce open(unit=99,file="1yLbf.d")
cce do i=1,5000

cce read(99,*)YY(i)
cce enddo

close(99)
C

¢ LOOP ON THE NUMBER OF DATA SETS
DO 999 SET=1,10
write(98,*)
write(gs,*)'t*tttttttt.ttttttt‘lttt‘ttt#t‘*#ti‘t*t#‘l‘i‘*#tt‘l'
write(98,*)SET NUMBER: ',SET

C
do i=1,max

¢ if T(x) is used to estimate the parameter

YI(i)=YY(i+102*(SET-1))

¢ if TL is used to estimate the parameter

cce YI(i)=YY(i+500*(SET-1))
enddo

C

¢ define X(i),the position vector and initialize the bl vector
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call init
C
c start Box-Kanemasu method
iterk = 0
iterk = iterk+1

e M-

set parameters values to b1(j)
B(1) = bl(1)

First part in the Box-Kanemasu Method
solve for T(x) using B(j)=b1(j);
if keff is a polynomial use the bisection method
if T(x) is used to estimate the parameter
ccc T1(1) = 4.d0
do i=2,max
z = X(i)
call dichot(z,T)
Ti(i)=T
cce enddo
¢ if TL is used to estimate the parameter
cce z = X(maxL)
cce call dichot(z,T)
ccc do i=1,max
cce
cce
c

660 60o60A

g888

TiG) =T

enddo

if keff is a constant
do i=1,max

if T(x) is used to estimate the parameter

T1(i)=157.302d0/B(1)*X(i)+4.d0
¢ if TL is used to estimate the parameter
cce T1(i)=157.302d0/B(1)*X(maxL)+4.d0

enddo

[¢]

0

So is the sum of squares for the Bcoef(j)=b1(j) parameter values
So0=0.d0
do i=1,max
RES(i)=YI(i)-T1(i)
So=So+(RES(i))**2/sigma2
enddo

[¢]

C

c start sensitivity study

iterate on Np, the number of parameters to study
do 20 Kj=1,Np

5]

dB is the parameter variation used in the determination of the
sensitivity coefficients

cce dB = 0.01d40

¢ modify B(Kj)

cce B(Kj) = B(Kj)*(1.d0+dB)

C

c

c
¢ if keff is a polynomial, determine XI numerically
c
c

solve for T2 (including the influence of dB) using the bisection method
c if T(x) is used to estimate the parameter
cce T2(1) = 4.d0
cce do i=2,max

205



z = X(i)
call dichot(z,T)
T20) =T
enddo
if TL is used to estimate the parameter
z = X(maxL)
call dichot(z,T)
do i=1,max
T2i)) =T
enddo

reinitialize B(Kj)
B(Kj) = b1(Kj)

study XB(Kj)
do i=1,max
XI(i,Kj) = (T2(i)-T1()/B(Kj)*dB)
XT(Kj,i)=X1(i.Kj)
enddo

CEEER"CE OERBRERER G

c if keff is a constant, determine XI analytically
do i=1,max
¢ if T(x) is used to estimate the parameter
XI(i,Kj)=-157.302d0*X(iy¥B(Kj)**2
c if TL is used to estimate the parameter
cce X1(i,Kj)=-157.302d0* X (maxLyYB(Kj)**2
XT(K;j.i)=XI(1.Kj)
enddo
20 continue
C
¢ determine matrix XTX(Np,Np)
do j=1,Np
do k=1,Np
XTX(j.k)=0.d0
do i=1,max
XTX(§.k=XTX(,k)+XT(j,i)*XI(i,k/sigma2
enddo
enddo
enddo
C
¢ determine vector XTY(Np)
do j=1,Np
XTY(j)=0.d0
do i=1,max
XTY(§)=XTY(j)+XT(j,i))*RES(i}/sigma2
enddo
enddo
C
¢ Solve XTX*P=RI for P using the gaussian elimination method
¢ first define RI(Np,Np), the matrix identity
do j=1,Np
do k=1,Np
if (k.eq.j) then
RI(.k)=1.d0
else
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RI(j.x)=0.d0
endif
enddo
enddo
C
¢ solve successively each column of P
do 1=1,Np
C  *form the Np*(Np+1) augmented matrix AUG by adjoining RI to XTX
DO i=1,Np
DO j=1,Np
AUG(§)=XTX(,j)
ENDDO
ENDDO
DO i=1,Np
AUG(i,Np+1)=RI(i,])
ENDDO
DO 1070 i=1,Np
C  *locate nonzero diagonal entry
IF (AUG(1,i).eq.0.D0) THEN
PIVOT=0.DO
j=i+l
1030 1F ((PIVOT.eq.0.D0).AND.(j.Ie.Np)) THEN
IF (AUG(j,i).ne.0.D0) PIVOT=j
GO TO 1030
ENDIF
IF (PIVOT.eq.0.D0) THEN
STOP 'MATRIX IS SINGULAR'
ELSE
C  *interchange rows i and PIVOT
DO 1040 j=1,Np+1
TEMP=AUG(,j)
AUG(i,j=AUG(PIVOT,)
AUG(PIVOT,)=TEMP
1040 CONTINUE
ENDIF
ENDIF
C *eliminate ith unknown from equations i+1,....Np
DO 1060 j=i+1,Np
RMULT=-AUG(.i¥AUG(,i)
DO 1050 k=i,Np+1
AUG(j X)=AUG( k)}+RMULT*AUG(i.k)
1050 CONTINUE
1060 CONTINUE
1070 CONTINUE
C  *find the solutions
P(Np,)=AUG(Np,Np+1¥AUG(Np,Np)
DO 1090 j=Np-1,1,-1
P(j,)=AUG(j,Np+1)
DO 1080 k=j+1,Np
P(.)=P(.)-AUG( k)*P(k.1)
1080 CONTINUE
PG.I=PG.IVAUG(G )
1090 CONTINUE
enddo
C
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determine vector dgb(Np)
do j=1,Np
dgb()=0.d0
do k=1,Np
dgb(j)=dgb(j)+P(j.k)*XTY (k)
enddo
enddo

(<]

G is a measure of the slope; it should approach zero at convergence
G=0.d0
do j=1,Np
sum=0.d0
do k=1,Np
sum=sum+XTX(j.k)*dgb(k)
enddo
G=G+dgb(j)*sum
enddo

o0

C
Third part in the Box-Kanemasu Method
By the definition of G, it should always be positive
if (G.1t.0.d0) then
write(98,*)G is negative ! Terminate calculations’
gotoS
endif

(eI ¢]

Fourth part in the Box-Kanemasu Method
alpha=2.000d0
AA=1.1d0

2  alpha=alpha/2.d0

do j=1,Np
B(j)=b1(j)+alpha*dgb(j)

enddo

L¢]

C
¢ solve for T(x) using B(j)=b1(j)+alpha*dgb(j);
¢ if keff is a polynomial use the bisection method
¢ if T(x) is used to estimate the parameter
cce Ti(1) = 4.d0
cce do i=2,max
cce z = X(i)
cce call dichot(z,T)
cce Ti)=T
cce enddo
¢ if TL is used to estimate the parameter
cce z = X(maxL)
cce call dichot(z,T)
cce do i=1,max
cce Ti)=T
cce enddo
¢ if keff is a constant
do i=1,max
¢ if T(x) is used to estimate the parameter
T1(i)=157.302d0/B(1)*X(i)+4.d0
¢ if TL is used to estimate the parameter
cce T1(i)=157.302d0/B(1)*X (maxL)+4.d0
enddo
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C
¢ Salpha is the sum of squares for the Bcoef(j)=b1(j)+alpha*dgb(j) parameter
¢ values. Salpha decreases towards a positive constant and should be less
c than So
Salpha=0.d0
do i=1,max
RES(i)=Y1()-T1(i)
Salpha=Salpha+(RES(i))**2/sigma2
enddo
C
if (Salpha.gt.So) then
if (alpha.le.0.01d0) then
write(98,*)alpha is too small '
write(98,'("alpha = ",F12.6,2x,"Salpha = ",E15.6,
+ 2x,"So = ",E15.6)")alpha,Salpha,So
gotoS5
else
goto 2
endif
endif
C
sumch=So-alpha*G*(2.d0-1.d0/AA)
¢ h is a scalar interpolation factor; its a fraction of the Gauss step
¢ given by the Box-Kanemasu method
if (Salpha.gt.sumch) then
h=alpha**2*G/(Salpha-So0+2.d0*alpha*G)
else
h=alpha*AA
endif
C
¢ Calculate the final parameter estimates using h
¢ Also calculate ratio; if it is less than criter, then the change in
¢ the estimated parameters is insignifiant and the iterative process is
¢ terminated. change is used to determine when all parameters stop varying
change=0
do j=1,Np
b2(j)=b1(j}+h*dgb()
ratio=abs(b2(j)-b1(j))/(abs(b1(j))+deltal)
if (ratio.le.criter) change=change+1

enddo

C

¢ Print out the calculate values for h, G, So and Salpha
write(*,1300)
write(98,1300)

1300 format(5x,'iterk’,10x,'h’,13x,'G',12x,'S0’,11x,'Salpha’)
write(*,1301 )iterk,h.G,So,Salpha
write(98,1301)iterk,h,G,So,Salpha

1301 format(I8,4E14.6,/)

C

¢ Print out the final parameter estimates
write(98,*)The final parameter estimates for this iteration are'
write(*,*)'The final parameter estimates for this iteration are’
write(98,1310) (b2(j),j=1.Np)
write(*,1310) (b2(j),j=1.Np)

1310 format(E16.6)
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C
¢ Print out the P matrix
write(98,'(/,""The P matrix is"))
do j=1,Np
write(98,1320) (P(j,k).k=1,Np)
enddo
1320 format(D15.7)
C
¢ Determine and print out the correlation matrix
¢ The diagonal terms of the correlation matrix are all unity and the off
¢ -diagonal terms must be in the interval [-1,1]. Whenever all the off
¢ -diagonal terms exceed 0.9 in magnitude, the estimates are highly
c correlated and tend to be inaccurate
write(98,'(/,"The correlation matrix is")')
do j=1,Np
do k=1,
ar=P(jj)*P(k.k)
RR(j k)=P(j,kVsqrt(ar)
enddo
enddo
do j=1,Np
write(98,'(E15.7)) (RR(j,k),k=1,j)
enddo

if (Np.gt.change.and.iterk.le.lastk) then
do j=1,Np
b1(j)=b2()
enddo
gotol
endif
C
¢ for the estimation of a constant effective thermal conductivity
c store final estimate
sol(SET)=b2(1)
999 CONTINUE
C
¢ come here to perform statistic calculations for the 10 data sets
¢ compite the mean value of the estimates
mean=0.d0
do i=1,10
mean=mean+sol(i)
enddo
mean=mean/10.d0
¢ compute the standard deviation
dev=0.d0
do i=1,10
dev=dev+(sol(i)-mean)**2
enddo
dev=sqrt(dev/9.d0)
¢ compute the 95% confidence interval for the mean value
confint=2.262d0*dev/sqrt(10.d0)
write(98,*)
write(98,1310)'mean= ', mean
write(*,1310)'mean= ",mean
write(98,1310)'95% confidence interval= ',confint
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write(*,1310)95% confidence interval= ‘,confint

write(98,1310)'standard deviation of the sample= ' dev

write(*,1310)'standard deviation of the sample=',dev
1310 format(E16.6)

C

5 close(98)
STOP 'K ESTIMATION DONE’
END

skkhkkkkRkRkkkkkbkkrkkkgkkrhkkkkkkkkkkkkkkphkkkpkkkkpkkkkkkk kiR kpkkkrkk

subroutine init

C
integer maxL.,i
double precision L
double precision b1(1),X(102)
C
COMMONM1COEF/b1
COMMON/LENGTH/X
C

¢ define position vector
¢ (so that it is equivalent to 100 CV in the x-direction in ORTHO3D)
L = 0.1524d0
maxL=102
X(1)=0.d0
X(2)=L/(100.d0*2.40)
do i=3,(maxL-1)
X(1) = X(i-1)+L/100.d0

enddo
X(maxL) = L
¢ define initial estimate for the parameter studied
b1(1) = 3.0d-1
C
return
end

KRR ERRE R AR AR RERAERERERRERRE R R KR RRERERRE AR R R AR R AR RO RN RR RS

subroutine dichot(x,T)

C
integer Kcount
double precision Byy2,Byy3,Byy4,
+ x,T,al,a2,¢c,qin,K,Qal,Qa2,Qc,epsi,Poly
double precision B(1)

C
COMMON/BCOEF/B
COMMON/Byy/Byy2,Byy3,Byy4

C

¢ define thermal conductivity coefficients not studied as parameters
Byy2 = 2.78287d-2
Byy3 = -3.02917d4
Byy4 = 1.26054d-6

C

¢ define input heat flux
qin = 483.237d0

C

¢ define limits of the interval studied [al.a2] for the T range
al = 3.d0
a2 = 100.d0
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¢ define constant K in the T solution

C

K = 4.d0*B(1)+8.d0*Byy2+4.d0**3/3.d0*Byy3+64.d0*Byy4

¢ solve for T(x) using the bisection method

Kcount = 0

10 Kcount = Kcount+1

Qal = Poly(al)-(gin*x+K)
Qa2 = Poly(a2)-(gin*x+K)
c = (al+a2)/2.d0

Qc = Poly(c)-(qin*x+K)

if ((Qa1*Qc).1.0.d0) then

a2 =c¢
else

al=c¢
endif

epsi = (abs(Qal)+abs(Qa2))/2.d0
if (Kcount.gt.1000) STOP 'Kcount greater than 1000’
if (epsi.gt.1d-4) then
go to 10
else
T=c
endif

return
end
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C

double precision function Poly(T)

double precision T,Byy2,Byy3,Byy4
double precision B(1)

COMMON/BCOEF/B
COMMON/Byy/Byy2.Byy3.Byy4

Poly = B(1)*T+Byy2/2.d0*T**2+Byy3/3.d0*T**3+Byy4/4.d0*T**4
return
end

2222 2 22 Rt 2 2 222 R 2 R TRt 22 22 a2t iR i RS2 e 2L ]
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Appendix H

The Fortran Program YLFOR

This program, YLFOR, reads a file of numerical temperatures obtained using
ORTHO3D for a specific HTS thermal bridge and adds random errors to simulate
measured temperatures. Sets of simulated temperatures are obtained both along the
thermal bridge and at the warm end. The simulated measured temperatures are then used
for the estimation of the thermal conductivity parameters. This program was written by

Sandrine Garcia, 1994.

PROGRAM YI

COMMON/RAND/L1,STDDV
COMMON NDAT
DIMENSION DATA(20000)
DIMENSION T(102)

L1=102
STDDV=1.0d0
C
¢ read the numerical temperatures obtained using ORTHO3D
open(unit=30,file="b{.100")
do i=1,L1
read(30,*)T(i)
enddo
close(30)

open(unit=2.file="1yLbf.d")
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cce open(unit=2, file='o1ybf.d’)
open(unit=50,file="Nseed")
C
ccc do j=1,10
do j=1,50
call random(data)
¢ Addition of random errors to calculated numerical Temperatures T(x)

cee do i=1,L1
cce Y=T() + data(i)
¢ Addition of random errors to calculated numerical Temperatures T(L1)
do i=1,100
Y=T(L1) + data(i)
write(2,*)Y
enddo
enddo
close(50)
close(2)
C
stop
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeece
Subroutine random(data)
¢ See Numerical Recipes by Press, Flannery, Teukolsky and Vetterling,
c Cambridge Press, 1986 about page 192
¢ Modified by J.V. Beck, Michigan State University
C
COMMON/RAND/L1,STDDV
COMMON NDAT
parameter(PI=3.14159265,NBIN=1000)
Dimension data(20000)

read(50,*)idum
NDAT=L1+NBIN
thon=0.0
rhod=0.0
do 500 idumi=1,1
data(1)=gasdev(idum)*STDDV
do 11 i=2,L1
data(i)=gasdev(idum)*STDDV
rhon=rhon+data(i-1)*data(i)
rhod=rhod+data(i)*data(i)
11 continue
12 continue
rho=rhon/rhod
call moment(data.i-1,ave,adev,sdev,var,rho)
500 continue
write(*,*)' Values of quantities’
write(*,'(1x,T29,A,T42,A/)") Sample ', Expected'
write(*,'(1x,A,T25,2F12.4)'Y'Mean :',ave, 0.0
write(*,'(1x,A,T25,2F12.4)") Average Deviation :',adev,STDDV
write(*,'(1x,A,T25,2F12.4)'y Standard Deviation :',sdev,STDDV
varth=stddv*stddv
write(*,'(1x,A,T25,2F12.4)")'Variance :',var,varth
write(*,'(1x,A,T25,F12.4yYEst. Correlation Coeff.".rho
write(*,*)'Average deviation comes from use of absolute values’
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return
end

Ct_‘_#_*_t_*_*_*_i_*_t_#_t_t_t_i_#_*_t_#_*_i_t_*_#_t_*_*_*_*_t_‘_*_t_*_*

C

C

11

12

Subroutine moment(data,n,ave,adev,sdev,var,rtho)
Dimension data(20000)

If (n.le.1) pause 'n must be at least 2'

5=0.

sd=0.

sn=0.

do 11 j=1,n
s=s-+data(j)
if (j.eq.1) goto 11
sn=sn+data(j)*data(j-1)
sd=sd+data(j)+data(j)

continue

ave=s/n

adev=0.

var=0.

do 12 j=1,n
s=data(j)-ave
adev=adev+abs(s)
p=s*s
var=var+p

continue

adev=adev/n

var=var/(n-1)

sdev=sqrt(var)

rho=sn/sd

return
end

C‘_‘_‘_t_._*_t_t,‘_‘_t_‘_._‘_t_t_‘_i_t_t_._‘_t_#_‘_t_‘_._t_‘_‘_t_._‘_t_‘

Function ran1(idum)

¢ Returns uniformly distributed numbers between 0 and 1

C

11

Dimension R(97)

Parameter (M1=259200,1A1=7141,IC1=54773,RM1=3.8580247E-6)
Parameter (M2=134456,1A2-8121,IC2=28411,RM2=7.4373773E-6)
Parameter (M3=243000,1A3=45611C3=51349)

Data IFF/0/

if (idum.1t.0.or IFF.eq.0) then

IFF=1

IX1=MOD(IC1-idum ,M1)

IX1=MOD(IA1*IX1+IC1,M1)

IX2=MOD(IX1,M2)

IX1=MOD(IA1*IX1+IC1,M1)

IX3=MOD(IX1,M3)

do 11 j=1,97
X1=MOD{IAI1*IX1+IC1,M1)
X2=MODIA2*IX2+IC2,M2)
R(j)}=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1

continue
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idum=1
endif
IX1=MOD(A1*IX1+IC1,M1)
DX2=MOD(IA2*IX2+IC2,M2)
IX3=MOD{IA3*IX3+IC3,M3)
j=1+(97*IX3yYM3
if (j.gt.97.0r.j.lt.1) pause
ran1=R(j)
R(j)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1

return
end

Ct_tt"*#“t.#tt#t*t*‘#““t.tt‘##‘t#‘

Function gasdev(idum)
¢ Uses Box-Muller transformation fron uniform distribution to normal
¢ distribution with unit standard deviation
C
DATA ISETN/
C
if (ISET.eq.0) then
1 v1=2.*ranl(idum)-1.
v2=2.*ranl(idum)-1.
R=v1*%24v2**2
if (R.ge.1l..or.R.eq.0.) goto 1
fac=sqrt(-2.*LOG(R)/R)
gset=v1*fac
gasdev=v2*fac
ISET=1
else
gasdev=gset
ISET=0
endif
C
return
end
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Appendix I

The Fortran Subroutine XI3D.FOR

This subroutine, YLFOR, was written as the adapt part of the program ORTHO3D
(provided at the end of the subroutine KBOXEFF.FOR in Appendix F). XI3D.FOR is
used to compute the dimensionless sensitivity coefficients of the thermal conductivity

parameters for the HTS thermal bridge materials.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccceccceccecccececceccccccecececce
SUBROUTINE ADAPT

c

¢ HP £77 version, 3-D dp Iso version - DIN

c

cS$noextensions

C

C----- STEADY CONDUCTION IN A 3D HALF HTS THERMAL BRIDGE -----

with isotropic gamma

anan

----- Dimensionless Sensitivity Coefficient Determination for the Material
C Thermal conductivity Parameters.

C Subroutine XI3D.FOR, written by Sandrine Garcia, 1994.

C

INCLUDE ‘common3d.f
o L T e e e e e
DIMENSION Xsens(NI)
DIMENSION TI1(NI), T2(NI)
DIMENSION T(NI,NJ,NK)
EQUIVALENCE (F(1,1,1,1),T(1,1,1))

Ct_#lt*‘**ttt“t‘tt.t‘.ttt““tttt‘ttt

ENTRY GRID
C
HEADER='"HALF BSCCO/FSI - L=152.4mm - XF1 influence’
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PRINTF=X'

C

¢ set geometric dimensions
rL = 0.152440

¢ if there is a buffer layer (the substrate is FSI)
thk2=0.0000003d0

c if there is no buffer layer

ccc  thk2 = 0.0d0
risuperc = 0.003048d0
el = 0.0001524d0
e2 = 0.0000508d0
a = 0.003048d0

C

¢ zoned grid method

c set x, y and z zones
NZX =1
XZONE(1) =1L
NCVX(1) = 100

NZY =2
YZONE(1) = a
NCVY(1) = 4
YZONE(2) = risuperc/2.d0
NCVY(2)=3
C
ccce NZZ =2
c if the substrate is FSI, add 1 CV for the buffer layer
NZZ =3
ZZONE(1) = el
NCVZ(1)=3
c if there is no buffer layer
ccc  ZZONE(Q2) = €2
ccc NCVZ(2)=2
c if there is a buffer layer
ZZONE(2) = thk2

NCVZ(2)=1
ZZONE(@3) = e2
NCVZ(3)=2
C
CALL ZGRID
C
¢ set convergence parameter
epsi = 1.d-5
¢ set maximum number of outer iterations
LAST =50
¢ set minimum number of outer iterations
ITRMIN =8
(o

c set thermal conductivity coefficients
Bgl = 0.355840
Bg2 = 0.07173d0
Bg3 = 0.01066d0

Bg4 = -3.706d-4
Bg5 = 4.814d-6
Bg6 = -2.839d-8
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L3 ¢

[¢]

(¢}

[¢]

[e]

Bg7 = 6.37d-11

Byl = 0.4464d0
By?2 = -0.002426d0
By3 = 9.229d-4
By4 = -2.793d-5
ByS = 3.772d-7
By6 = -2.395d-9
By7 = 5.839d-12

Bfl = 0.01565d0
Bf2 = 0.002761d0
Bf3 = 1.561d4
Bf4 = -3.076d-6
BfS = 3.403d-8
Bf6 = -2.009d-10
Bf7 = 4.826d-13

Bzl = -0.2045d0
Bz2 = 0.1159d0
Bz3 = -0.001041d0

Bz4 = -2.761d-5
BzS = 6.671d-7
Bz6 = -5.1274-9

Bz7 = 1.367d-11

Bybl = 0.1567d0
Byb2 = 0.01403d0
Byb3 = 0.007463d0
Byb4 = -2.51d-4
BybS = 3.437d-6
Byb6 = -2.201d-8
Byb7 = 5.45d-11

Bbsl = 0.143d0
Bbs2 = 0.05445d0
Bbs3 = -0.003517d0
Bbsd4 = 1.243d-4
BbsS = -2.1d-6
Bbs6 = 1.665d-8
Bbs7 = -5.035d-11

set input heat flux (W/m*K)

- if the thermal bridge is YBCO/GREEN
Qyg = 2415.429d0

- if the thermal bridge is YBCO/YSZ
Qyy = 483.237d0

- if the thermal bridge is BSCCO/YSZ
Qby = 380.095d0

- if the thermal bridge is YBCO/FSI
Qyf = 260.383d0

- if the thermal bridge is BSCCO/FSI
Qbf = 157.302d0

dB=0.d0
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KSTOPPP=0
RETURN
ENTRY BEGIN
C
TITLE(1) = TEMPERATURE'
KSOLVE(1)=1
KPRINT(1)=0
KPLOT(1) =0
KSTOP=0
ITER=0
C
¢ modify one thermal conductivity coefficient
Bfl1l = Bf1*(1.d0+dB)
C
¢ set initial temperature (K)
DO K=1,N1
DO J=1M1
open(unit=3,file="bf.100")
DO I=1,L1
read(3,*)T(1,],K)
ENDDO
close(3)
ENDDO
ENDDO
C
QOUTO = 0.D0
RETURN

Ct_‘it#tltt‘i#‘t#‘tltt‘i‘ttt*“tt‘tttt

ENTRY OUTPUT
c
QIN =0.D0
QOUT = 0.D0
DO 20 J=2,M2
DO 20 K=2,N2
QIN =QIN + YCV(J)*ZCV(K)*FLUXL1(J.K,1)
QOUT = QOUT + YCV(J)*ZCV(K)*FLUXI1(J.K,1)
20 CONTINUE

C
DO 200 IUNIT=IU1,JU2
IF(ITER.EQ.0) WRITE(IUNIT,210)
210 FORMAT(2X,TTER' 3X, T(L1,M2,11),5X, T(L1,M2,12),9X,'QIN’,
+ 13X,'QOUT,9X,'NTC(1))

WRITE(IUNIT,220)ITER,T(L1,M2,11),T(L1,M2,12),QIN,QOUT,NTC(1)
220 FORMAT(2X.I3,3X,1PE10.4,5X,1PE10.4,7X,1PE10.4,7X,1PE12.4,
+ 7X.12)
200 CONTINUE
C
¢ create a convergence criterion
IF (ITER.LTITRMIN) RETURN
DIFF = ABS((QOUT-QOUTO)(QOUT+SMALL))
QOUTO=QOUT
IF (DIFF.LE.epsi.OR.ITER.EQ.LAST) THEN
C
¢ calculate overall energy balance
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HTBAL = QIN + QOUT
EBAL = ABS(HTBAL/QIN)
DO 40 IUNIT=IU1,IU2
WRITE(IUNIT,S0)EBAL
FORMAT(/,2X,'/EBAL’,1PE11.3)
CONTINUE

g3

If (Kstoppp.eq.0) then

do i=1,L1
T1(1)=T({,M2,11)

enddo
dB=0.01d0
Kstoppp=1
go to 13

endif

CCCCCCCCCCCCCCLCCCCCCLCCCCCCCCCCCCCCLCCCCCCCCCCC SCCCCCCCOCCCCCC *CCCCCCCCCCCCCCK

¢ Come here to start dimensionless sensitivity coefficient calculation
open (unit=1,file="bfXfl.dat’)
C
do i=1,L1
T2(i) = T(i,M2,11)
¢ dimensionless temperatures
T2(i) = (T2(i)}-T1(ANATL(L1)-T1(1))
T1(i) = (T1(1)-TI(HW(TI(LL)-T1(1))
¢ dimensionless coefficients
Xsens(i) = (T2(i)-T1(i))/dB
write(1,1000)X (i), Xsens(i)
1000 format(1F12.6,3x,1PE15.6)
enddo
close(1)
STOP ‘X1 determination done’

RETURN

C*_t_*_‘_#_l-t_t_t_l_*_t_t_‘_‘_._t_t-#_l_t_‘_‘_t_l_‘_t_#_l_t-t_*_t_i_‘_t

C

¢ set conductivities
DO 300 K=2,N2
DO 300 J=2,M2
DO 300 1=2,L2

C

IF (Z(K).LE.el) THEN
¢ if the substrate is the GREEN PHASE :

ccc GAM(,J K) = Bgl + Bg2*T(1,J,K)
cee  + + Bg3*T(1J.K)**2
cce + + Bgd*T(1J,K)**3
cce + + Bg5*T(1LJ,K)**4
cce + + Bg6*T(LJ,K)**5
ccc 4+ + Bg7*T(LJ,K)**6

¢ if the substrate is YSZ :

cce GAM(1,J.K) = Byl + By2*T(1,J.K)
ccc + + By3*T(L1,K)**2
ccc + + By4*T(L],K)**3
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cce + + By5S*T(LJ,K)**4

cce + + By6*T(1,J,K)**5

cce 4+ + By7*T(LJ.K)**6

¢ if the substrate is FSI :

GAM(LJ.K) = Bfi1 + Bf2*T(1,J K)
+ Bf3*T(1,J,K)**2
+ Bf4*T({1,J, K)**3
+ BfS*T(1.1.K)**4
+ Bf6*T({1,J, K)**5
+ Bf7*T(1,J,K)**6

+ 4+ + 4+

ELSE
C
IF (Z(K).GT.e1.AND.Y(J).LT.a) GAM(I.JLK) = 0.d0
C
c if there is a buffer layer (the substrate is FSI)
IF (Z(K).GT.¢1.AND.Z(K).LE.(e1+thk2).AND.
+ Y(J).GE.a) THEN
GAM(LJ.K) = Bzl + Bz2*T(I.1.K)
+ Bz3*T(1,J,K)**2
+ Bz4*T(1,J,K)**3
+ B25*T(1.J.K)**4
+ Bz6*T(1,J K)**5
+ Bz7*T(1,J.K)**6

+ 4+ + 4

ENDIF

IF (Z(K).GT.(e1+thk2). AND.Z(K).LE.(e1 +thk2+e2). AND.
+ Y(J).GE.a) THEN
¢ if the superconductor is YBCO :

cce GAM(,J.K) = Byb1 + Byb2*T(LJK)
ccc + + Byb3*T(L1,K)**2
ccec + + Byb4*T(LIK)**3
ccc + + BybS*T(LJ K)**4
ccc + + Byb6*T(LJ K)**5
cee + + Byb7*T(LIK)**6

c if the superconductor is BSCCO :
GAM(LJ.K) = Bbsl + Bbs2*T(LJK)

+ + Bbs3*T(1J,K)**2
+ + Bbs4*T(LJ,K)**3
+ + Bbs5*T(1J,K)**4
+ + Bbs6*T(LJ,K)**5
+ + Bbs7*T(1,J, K)**6
ENDIF
ENDIF
300 CONTINUE
C
¢ set boundary conditions
DO 310 K=2,N2
DO 310 J=2M2
KBCLI(JK) =2
c - for the substrate
IF (Z(K).LE.el) THEN
FLXCL1(J,K) = Qbf
ELSE
C
c - if there is a buffer layer
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IF (Y(J).GE.a.AND.Z(K).GT.e1.AND Z(K).LE.
+ (el+thk2)) THEN
FLXCL1(J,K) = Qbf
ENDIF

c - for the superconductor
IF (Y(J).GE.a.AND.Z(K).GT .(el+thk2). AND.Z(K).LE.
+ (el+thk2+e2)) THEN
FLXCL1(J,K) = Qbf
ENDIF
ENDIF
310 CONTINUE
C
DO 320 K=2,N2
DO 320 I=2,L2
KBCJ1(1,K)=2
KBCM1(1,K)=2
320 CONTINUE
C
DO 330 J=2,M2
DO 330 1=2,L.2
KBCKI1(LJ)=2
KBCN1(L))=2
330 CONTINUE
C
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcececececece
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeceeceeec
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Appendix J

The Fortran Program XIEFF.FOR

This program, XIEFF.FOR, is used to compute the dimensionless sensitivity
coefficients of the effective thermal conductivity parameters for the HTS thermal bridges.

This program was written by Sandrine Garcia, 1994.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee”
Program XIEFF
C
integer Np,manx,i,Kj
double precision al,z
double precision B(4),Bi(4).X(102),T1(102),T2(102),X1(102,4),
+ T22(102),T11(102)
C
COMMON/BCOEF/B
COMMON/BCOEFL/Bi
COMMON/LENGTH/X
C
Np is the number of parameters to study
Np=4
¢ max is the number of points
max = 102
define the position and the Bcoef vectors
call init(max)

o]

[+]

C
solve for T(x) using the nominal values for the parameters
c use the bisection method
T1(1) = 4.d0
al = 4.d0
do i=2,max
z = X(i)
call dichot(z,al)

e]
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Ti() = al
write(*,'(" T1: i, T1 ".i3,3x,F12.6)"i,T1()
enddo

open(unit=1,file="ygeff.T")

do i=1,max
write(1,*)T1(i)

enddo

close(1)

start sensitivity study
dB = 0.0140
open(unit=2,file="ygXeff.dat’)

o0

¢ iterate on Np, the number of parameters to study
do 20 Kj=1,Np
C
¢ modify B(Kj)
B(Kj) = B(Kj)*(1.d0+dB)
write(2,'("B: ",4E12.6))B(1),B(2),B(3).B(4)
C
¢ solve for T2 (including the influence of dB)
T2(1) = 4.d0
al = 4.d0
do i=2,max
z = X(i)
call dichot(z,al)
T2(i) = al
enddo
C
c reinitialize B(Kj)
B(Kj) = Bi(Kj)
C
¢ study XB(Kj)
do i=1,max
¢ dimensionless T

T22(i) = (T23i)-T1(D))/(T1(max)-T1(1))
T11¢i) = (T1(i)-T1(1))/(T1(max)-T1(1))
¢ dimensionless sensitivity coefficient
X1(i,Kj) = (T22(i)-T11(i)/dB
write(2,1000)X(1).XI(1.Kj)
enddo
1000 format(1F12.6.3x,1E12.6)
20 continue
close(2)
STOP 'Xi determination done'
END

“t.*#ltt‘*t‘**i#*ttttti‘3‘#‘ttt.l‘t#i“’t*“t“‘t‘t‘t‘ttlt“.it‘tttit-ti

subroutine init(max)

C
integer max,i
double precision L
double precision B(4),Bi(4),X(102)
C
COMMON/BCOEF/B
COMMON/BCOEFI/Bi
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COMMON/LENGTH/X
C
c define position vector
¢ (so that it is equivalent to 100 CV in the x-direction in Conduct)
L = 0.1524d0
X(1)=0.d0
X(2)=L/(100.d0*2.d0)
do i=3,(max-1)
X(i) = X(i-1)+L/100.d0
enddo
X(max) =L
C
¢ define nominal values for the parameters studied
c if the thermal bridge is BSCCO/FSI
cce Bi(1) = 4.094868d-2
cce Bi(2) = 4.611036d-3
cce Bi(3) = 6.987674-5
cce Bi(4) = -5.675586d-7
c if the thermal bridge is YBCO/FSI
cce Bi(1) = -4.74875d-2
cce Bi(2) = 2.008335d-2
cce Bi(3) = -1.37505310d-4
cce Bi(4) = 2.5045434d-7
¢ if the thermal bridge is BSCCO/YSZ
cce Bi(1) = 3.677809d-1
cce Bi(2) = 1.274091d-2
cce Bi(3) = -6.44-5
cce Bi(4) = 3.722766d-9
c if the thermal bridge is YBCO/YSZ
cce Bi(1) = 2.792925d-1
cce Bi(2) = 2.822244d-2
cce Bi(3) = -2.71507d-4
cce Bi(4) = 8.222185d-7
c if the thermal bridge is YBCO/GREEN
Bi(1) = -7.614828d-1
Bi(2) = 2.915835d-1
Bi(3) = -3.604426d-3
Bi(4) = 1.083079d-5

0

¢ initialize the parameters
B(1) = Bi(1)
B(2) = Bi(2)
B(3) = Bi(3)
B(4) = Bi(4)

return
end
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subroutine dichot(x.,al)
C
integer Kcount
double precision x,al,a2.c,qin,K.Qal1,Qa2,Qc.epsi,P
double precision B(4)

COMMON/BCOEF/B
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C

¢ define input heat flux

cce
cce
cce
cce

C

gin = 157.302d0
gin = 260.383d0
gin = 380.095d0
gin = 483.237d0

qin = 2415.429d0

¢ define 2nd limit b of the interval studied [a,b] for the T range

a2 = 100.d0

¢ define constant K in the T solution

C

K = 4.d0*B(1)+8.d0*B(2)+4.d0**3/3.d0*B(3)+64.d0*B(4)

¢ solve for T(x) using the bisection method

10

Kcount = 0

Kcount = Kcount+1
Qal = P(al)-(qin*x+K)
Qa2 = P(a2)-(qin*x+K)

¢ = (al+a2)/2.d0
Qc = P(¢c)-(qin*x+K)

if ((Qa1*Qc).1t.0.d0) then

a2 =c¢
else

al =c¢
endif

epsi = (abs(Qal)+abs(Qa2))/2.d0
if (Kcount.gt.1000) STOP "Kcount greater than 1000’
if (epsi.gt.1d-4) go to 10

return
end
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C

double precision function P(T)

double precision T
double precision B(4)

COMMON/BCOEF/B
P = B(1)*T+B(2)/2.d0*T**2+B(3)/3.d0*T**3+B(4)/4.d0*T**4

return
end
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Appendix K

The Fortran Program KEFF.FOR

This program, KEFF.FOR, is used to compute the true estimates of the constant
effective thermal conductivities of the HTS thermal bridges. This program was written

by Sandrine Garcia, 1994.

CCCCCCCCCCCCCCeeececececececececcecececccececccecececcececccecceccececeececece
Program KEFF
C
integer i
double precision ratiosup,ratiosub,ratiobl
double precision B(7),Bsup(7),Bsub(7),Bbl(7),T keff,
+ truekl,truekx,TL,dT,T1(102)
C
c set the surface ratios
Asup = 0.1548384d0
Asub = 1.3935456d0
¢ - if there is no buffer layer
cce Atot = 1.54838406d0
c - if there is a buffer layer
Abl = 0.0009144d0
Atot = 1.549298440
C
ratiosup = Asup/Atot
ratiosub = Asub/Atot
c if there is a buffer layer
ratiobl = Abl/Atot
C
¢ set the material thermal conductivity coefficients
¢ if the substrate is the GREEN Phase
cce Bsub(1) = 0.3558d0
cce Bsub(2) = 0.07173d0
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cce Bsub(3) = 0.01066d0
ccc Bsub(4) = -3.706d4
cce Bsub(5) = 4.8144-6
cce Bsub(6) = -2.839d-8
cce Bsub(7) = 6.37d-11
C
c if the substrate is YSZ
ccc Bsub(1) = 0.4464d0
cce Bsub(2) = -0.00242640
cce Bsub(3) = 9.2294-4
cce Bsub(4) = -2.793d-5
cce Bsub(5) = 3.772d-7
cce Bsub(6) = -2.3954-9
cce Bsub(7) = 5.839d-12
C
¢ if the substrate is FSI
Bsub(1) = 0.01565d0
Bsub(2) = 0.00276140
Bsub(3) = 1.561d-4
Bsub(4) = -3.076d-6
Bsub(5) = 3.403d-8
Bsub(6) = -2.009d-10
Bsub(7) = 4.826d4-13
c for FSI add the buffer layer
Bbl(1) = -0.2045d0
Bbl(2) = 0.1159d0
Bbl(3) = -0.001041d0
Bbl(4) = -2.761d-5
BbI(5) = 6.671d-7
Bbl(6) = -5.127d-9
Bbi7) = 1.367d-11
C
¢ if the superconductor is YBCO
ccc Bsup(1) = 0.1567d0
cce Bsup(2) = 0.01403d0
cce Bsup(3) = 0.00746340
cce Bsup(4) = -2.51d4
ccc Bsup(5) = 3.437d-6
cce Bsup(6) = -2.201d-8
cce Bsup(7) = 5.45d-11
C
if the superconductor is BSCCO
Bsup(1) = 0.143d0
Bsup(2) = 0.05445d0
Bsup(3) = -0.003517d0
Bsup(4) = 1.243d-4
Bsup(5) = -2.1d-6
Bsup(6) = 1.665d-8
Bsup(7) = -5.035d-11
C
¢ DETERMINATION OF THE COEFFICIENT OF Keffective
¢ if there is no buffer layer
cce B(1) = ratiosup*Bsup(1) + ratiosub*Bsub(1)
cce B(2) = ratiosup*Bsup(2) + ratiosub*Bsub(2)
cce B(3) = ratiosup*Bsup(3) + ratiosub*Bsub(3)
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cce B(4) = ratiosup*Bsup(4) + ratiosub*Bsub(4)
cce B(5) = ratiosup*Bsup(5) + ratiosub*Bsub(5)
cce B(6) = ratiosup*Bsup(6) + ratiosub*Bsub(6)
cce B(7) = ratiosup*Bsup(7) + ratiosub*Bsub(7)

if there is a buffer layer
B(1) = ratiosup*Bsup(1) + ratiobl*Bbl(1) + ratiosub*Bsub(1)
B(2) = ratiosup*Bsup(2) + ratiobl*Bbl(2) + ratiosub*Bsub(2)
B(3) = ratiosup*Bsup(3) + ratiobl*Bbl(3) + ratiosub*Bsub(3)
B(4) = ratiosup*Bsup(4) + ratiobl*Bbl(4) + ratiosub*Bsub(4)
B(5) = ratiosup*Bsup(5) + ratiobl*Bbl(5) + ratiosub*Bsub(5)
B(6) = ratiosup*Bsup(6) + ratiob*Bbl(6) + ratiosub*Bsub(6)
B(7) = ratiosup*Bsup(7) + ratiobl*Bbl(7) + ratiosub*Bsub(7)

@]

¢ record keff data
open(unit=1,file="kbf .eff')
T=0.d0
do i=1,101
keff = B(1)+B(2)*T+B(3)*T**2+B(4)*T**3
+ +B(5)*T**4+B(6)*T**5+B(7)*T**6
write(1,*)T keff
T =T+1.d0
enddo
close(1)

fgggggdgge

¢ reads exact temperatures obtained from ORTHO3D
open(unit=99,file='bf.100")
do i=1,102
read(99,*)T1(i)
enddo
close(99)

determine the area under the keff curve for the range of temperature
investigated {4-80K]
set T interval to discretize the curve
dT=0.00001d0
c set initial T and initialize area to zero
T=4.d0
area=0.d0
sumarea=0.d0
sumbeta=0.d0
¢ determine the true estimate truekl (average value of keff on [To,TL}]
do while (T.le.T1(102))
i=i+l
keff = B(1)+B(2)*T+B(3)*T**2+B(4)*T**3
+ +B(5)*T**4+B(6)*T**5+B(7)*T**6
area = area+keff*dT
T = T+dT
enddo
truekl = area/(T1(102)-T1(1))

666N

C

¢ initialize area, sumbeta and sumarea to zero
area=0.d0
sumbeta=0.d0
sumarea=0.d0
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¢ determine the true estimate truekx
do i=1,101
keff = B(1)+B(2)"‘T1(i+1)+B(3)*T1(i+1)**2+B(4)*T1(i+1)"3
+ +B(5)“‘Tl(i+1)“*4+B(6)*T1(i+1)“5+B(7)*Tl(i+1)“6
area = area+kefP*(T1(1+1)-T1(i))
sumarea = sumarea+area
betax = area/(T1(i+1)-T1(1))
write(*,*)betax
sumbeta = sumbeta+area**2/(T1(i+1)-T1(1))
enddo
truekx = sumbeta/sumarea

write(*,*)'truekl = ',truekl
write(*,*)truekx = ’,truekx
stop

end
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